
Previous Article
Existence and uniqueness of traveling waves in a class of unidirectional lattice differential equations
 DCDS Home
 This Issue

Next Article
The generic behavior of solutions to some evolution equations: Asymptotics and Sobolev norms
Optimal regularity and stability analysis in the $\alpha$Norm for a class of partial functional differential equations with infinite delay
1.  Université Cadi Ayyad, Faculté des Sciences Semlalia, Département de Mathématiques, B.P.2390 Marrakech, Morocco 
2.  African Institute for Mathematical Sciences (AIMS), 6 Melrose Road, Muizenberg 7945, South Africa 
References:
[1] 
M. Adimy, A. Elazzouzi and K. Ezzinbi, Reduction principe and dynamic behaviors for a class of partial functional differential equations, Nonlinear Analysis, Theory, Methods and Applications, 71 (2009), 17091727. doi: 10.1016/j.na.2009.01.008. 
[2] 
R. Benkhalti and K. Ezzinbi, Existence and stability in the $\alpha$norm for some partial functinal differential equations with infinite delay, Differential and Integral Equations, 19 (2006), 545572. 
[3] 
O . Diekmann, S. A. Van Gils, S. M. Verduyn Lunel and H. O. walther, "Delay Equations, Functional, Complex and Nonlinear Analysis," 110, SpringerVerlag, New York, 1995. 
[4] 
K. J. Engel and R. Nagel, "OneParameter Semigroups of Linear Evolution Equations," 194, SpringerVerlag, Berlin, 2000. 
[5] 
K. Ezzinbi and A. Ouhinou, Necessary and sufficient conditions for the regularity and stability for some partial functional differential equations with infinite delay, Nonlienar Analysis, Theory, Methods and Applications, 64 (2006), 16901709. doi: 10.1016/j.na.2005.07.017. 
[6] 
K. Ezzinbi and A. Ouhinou, Stability and asymptotic behavior of solutions for some linear partial functional differential equations in critical cases, Nonlienar Analysis, Theory, Methods and Applications, 70 (2009), 40084020. doi: 10.1016/j.na.2008.08.010. 
[7] 
J. Hale and J. Kato, Phase space for retarded equations with unbounded delay, Funkcial Ekvac, 21 (1978), 1141. 
[8] 
Y. Hino, S. Murakami and T. Naito, "Functional Differential Equations with Infinite Delay," 1473, SpringerVerlag, Berlin, 1991. 
[9] 
T. Naito, J. S. Shin and S. Murakami, On solution semigroups of general functional differential equations, Nonlinear Analysis, 30 (1997), 45654576. doi: 10.1016/S0362546X(97)003155. 
[10] 
T. Naito, J. S. Shin and S. Murakami, On stability of solutions in linear autonomous functional differential equations, Funkcialaj Ekvacioj, 43 (2000), 323337. 
[11] 
T. Naito, J. S. Shin and S. Murakami, The generator of the solution semigroup for the general linear functional differential equation, Bull. Univ.ElectroCommunications, 11 (1998), 2938. 
[12] 
A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," 44, SpringerVerlag, New York, 1983. 
[13] 
C. C. Travis and G. F. Webb, Partial differential equations with deviating arguments in the time variable, Journal of Mathematical Analysis and Applications, 56 (1976), 397409. doi: 10.1016/0022247X(76)900524. 
[14] 
C. C. Travis and G. F. Webb, Existence, stability and compactness in the $\alpha$norm for partial functional differential equations, Transactions of the American Mathematical Society, 240 (1978), 129143. doi: 10.2307/1998809. 
[15] 
J. Wu, "Theory and Applications of Partial Functional Differential Equations," 119, SpringerVerlag, Berlin, 1996. 
show all references
References:
[1] 
M. Adimy, A. Elazzouzi and K. Ezzinbi, Reduction principe and dynamic behaviors for a class of partial functional differential equations, Nonlinear Analysis, Theory, Methods and Applications, 71 (2009), 17091727. doi: 10.1016/j.na.2009.01.008. 
[2] 
R. Benkhalti and K. Ezzinbi, Existence and stability in the $\alpha$norm for some partial functinal differential equations with infinite delay, Differential and Integral Equations, 19 (2006), 545572. 
[3] 
O . Diekmann, S. A. Van Gils, S. M. Verduyn Lunel and H. O. walther, "Delay Equations, Functional, Complex and Nonlinear Analysis," 110, SpringerVerlag, New York, 1995. 
[4] 
K. J. Engel and R. Nagel, "OneParameter Semigroups of Linear Evolution Equations," 194, SpringerVerlag, Berlin, 2000. 
[5] 
K. Ezzinbi and A. Ouhinou, Necessary and sufficient conditions for the regularity and stability for some partial functional differential equations with infinite delay, Nonlienar Analysis, Theory, Methods and Applications, 64 (2006), 16901709. doi: 10.1016/j.na.2005.07.017. 
[6] 
K. Ezzinbi and A. Ouhinou, Stability and asymptotic behavior of solutions for some linear partial functional differential equations in critical cases, Nonlienar Analysis, Theory, Methods and Applications, 70 (2009), 40084020. doi: 10.1016/j.na.2008.08.010. 
[7] 
J. Hale and J. Kato, Phase space for retarded equations with unbounded delay, Funkcial Ekvac, 21 (1978), 1141. 
[8] 
Y. Hino, S. Murakami and T. Naito, "Functional Differential Equations with Infinite Delay," 1473, SpringerVerlag, Berlin, 1991. 
[9] 
T. Naito, J. S. Shin and S. Murakami, On solution semigroups of general functional differential equations, Nonlinear Analysis, 30 (1997), 45654576. doi: 10.1016/S0362546X(97)003155. 
[10] 
T. Naito, J. S. Shin and S. Murakami, On stability of solutions in linear autonomous functional differential equations, Funkcialaj Ekvacioj, 43 (2000), 323337. 
[11] 
T. Naito, J. S. Shin and S. Murakami, The generator of the solution semigroup for the general linear functional differential equation, Bull. Univ.ElectroCommunications, 11 (1998), 2938. 
[12] 
A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," 44, SpringerVerlag, New York, 1983. 
[13] 
C. C. Travis and G. F. Webb, Partial differential equations with deviating arguments in the time variable, Journal of Mathematical Analysis and Applications, 56 (1976), 397409. doi: 10.1016/0022247X(76)900524. 
[14] 
C. C. Travis and G. F. Webb, Existence, stability and compactness in the $\alpha$norm for partial functional differential equations, Transactions of the American Mathematical Society, 240 (1978), 129143. doi: 10.2307/1998809. 
[15] 
J. Wu, "Theory and Applications of Partial Functional Differential Equations," 119, SpringerVerlag, Berlin, 1996. 
[1] 
Piotr Grabowski. On analytic semigroup generators involving Caputo fractional derivative. Evolution Equations and Control Theory, 2022, 11 (6) : 20992127. doi: 10.3934/eect.2022014 
[2] 
Jianghao Hao, Junna Zhang. General stability of abstract thermoelastic system with infinite memory and delay. Mathematical Control and Related Fields, 2021, 11 (2) : 353371. doi: 10.3934/mcrf.2020040 
[3] 
Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden, Adele Manes. Energy stability for thermoviscous fluids with a fading memory heat flux. Evolution Equations and Control Theory, 2015, 4 (3) : 265279. doi: 10.3934/eect.2015.4.265 
[4] 
Nguyen Dinh Cong. Semigroup property of fractional differential operators and its applications. Discrete and Continuous Dynamical Systems  B, 2023, 28 (1) : 119. doi: 10.3934/dcdsb.2022064 
[5] 
Gary Froyland, Cecilia GonzálezTokman, Anthony Quas. Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools. Journal of Computational Dynamics, 2014, 1 (2) : 249278. doi: 10.3934/jcd.2014.1.249 
[6] 
Aissa Guesmia, Nassereddine Tatar. Some wellposedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure and Applied Analysis, 2015, 14 (2) : 457491. doi: 10.3934/cpaa.2015.14.457 
[7] 
Yejuan Wang, Tongtong Liang. Mild solutions to the time fractional NavierStokes delay differential inclusions. Discrete and Continuous Dynamical Systems  B, 2019, 24 (8) : 37133740. doi: 10.3934/dcdsb.2018312 
[8] 
Khalil Ezzinbi, James H. Liu, Nguyen Van Minh. Periodic solutions in fading memory spaces. Conference Publications, 2005, 2005 (Special) : 250257. doi: 10.3934/proc.2005.2005.250 
[9] 
Leonid Shaikhet. Stability of delay differential equations with fading stochastic perturbations of the type of white noise and poisson's jumps. Discrete and Continuous Dynamical Systems  B, 2020, 25 (9) : 36513657. doi: 10.3934/dcdsb.2020077 
[10] 
Jin Liang, James H. Liu, TiJun Xiao. Condensing operators and periodic solutions of infinite delay impulsive evolution equations. Discrete and Continuous Dynamical Systems  S, 2017, 10 (3) : 475485. doi: 10.3934/dcdss.2017023 
[11] 
Arnaud Münch. A variational approach to approximate controls for system with essential spectrum: Application to membranal arch. Evolution Equations and Control Theory, 2013, 2 (1) : 119151. doi: 10.3934/eect.2013.2.119 
[12] 
Odo Diekmann, Karolína Korvasová. Linearization of solution operators for statedependent delay equations: A simple example. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 137149. doi: 10.3934/dcds.2016.36.137 
[13] 
Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 13951403. doi: 10.3934/proc.2011.2011.1395 
[14] 
Jiaohui Xu, Tomás Caraballo. Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete and Continuous Dynamical Systems  B, 2019, 24 (6) : 27192743. doi: 10.3934/dcdsb.2018272 
[15] 
C. Connell McCluskey. Global stability for an SEIR epidemiological model with varying infectivity and infinite delay. Mathematical Biosciences & Engineering, 2009, 6 (3) : 603610. doi: 10.3934/mbe.2009.6.603 
[16] 
Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete and Continuous Dynamical Systems  S, 2020, 13 (3) : 881888. doi: 10.3934/dcdss.2020051 
[17] 
Pallavi Bedi, Anoop Kumar, Thabet Abdeljawad, Aziz Khan. Sasymptotically $ \omega $periodic mild solutions and stability analysis of Hilfer fractional evolution equations. Evolution Equations and Control Theory, 2021, 10 (4) : 733748. doi: 10.3934/eect.2020089 
[18] 
Frédéric Naud. The Ruelle spectrum of generic transfer operators. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 25212531. doi: 10.3934/dcds.2012.32.2521 
[19] 
Adel M. AlMahdi, Mohammad M. AlGharabli, Saeed M. Ali. New stability result for a Bresse system with one infinite memory in the shear angle equation. Discrete and Continuous Dynamical Systems  S, 2022, 15 (5) : 9951014. doi: 10.3934/dcdss.2021086 
[20] 
Robert T. Glassey, Walter A. Strauss. Perturbation of essential spectra of evolution operators and the VlasovPoissonBoltzmann system. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 457472. doi: 10.3934/dcds.1999.5.457 
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]