• Previous Article
    Existence and uniqueness of traveling waves in a class of unidirectional lattice differential equations
  • DCDS Home
  • This Issue
  • Next Article
    The generic behavior of solutions to some evolution equations: Asymptotics and Sobolev norms
April  2011, 30(1): 115-135. doi: 10.3934/dcds.2011.30.115

Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay

1. 

Université Cadi Ayyad, Faculté des Sciences Semlalia, Département de Mathématiques, B.P.2390 Marrakech, Morocco

2. 

African Institute for Mathematical Sciences (AIMS), 6 Melrose Road, Muizenberg 7945, South Africa

Received  January 2010 Revised  July 2010 Published  February 2011

This work aims to investigate the regularity and the stability of the solutions for a class of partial functional differential equations with infinite delay. Here we suppose that the undelayed part generates an analytic semigroup and the delayed part is continuous with respect to fractional powers of the generator. First, we give a new characterization for the infinitesimal generator of the solution semigroup, which allows us to give necessary and sufficient conditions for the regularity of solutions. Second, we investigate the stability of the semigroup solution. We proved that one of the fundamental and wildly used assumption, in the computing of eigenvalues and eigenvectors, is an immediate consequence of the already considered ones. Finally, we discuss the asymptotic behavior of solutions.
Citation: Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115
References:
[1]

M. Adimy, A. Elazzouzi and K. Ezzinbi, Reduction principe and dynamic behaviors for a class of partial functional differential equations,, Nonlinear Analysis, 71 (2009), 1709.  doi: 10.1016/j.na.2009.01.008.  Google Scholar

[2]

R. Benkhalti and K. Ezzinbi, Existence and stability in the $\alpha$-norm for some partial functinal differential equations with infinite delay,, Differential and Integral Equations, 19 (2006), 545.   Google Scholar

[3]

O . Diekmann, S. A. Van Gils, S. M. Verduyn Lunel and H. O. walther, "Delay Equations, Functional, Complex and Nonlinear Analysis,", \textbf{110}, 110 (1995).   Google Scholar

[4]

K. J. Engel and R. Nagel, "One-Parameter Semigroups of Linear Evolution Equations,", \textbf{194}, 194 (2000).   Google Scholar

[5]

K. Ezzinbi and A. Ouhinou, Necessary and sufficient conditions for the regularity and stability for some partial functional differential equations with infinite delay,, Nonlienar Analysis, 64 (2006), 1690.  doi: 10.1016/j.na.2005.07.017.  Google Scholar

[6]

K. Ezzinbi and A. Ouhinou, Stability and asymptotic behavior of solutions for some linear partial functional differential equations in critical cases,, Nonlienar Analysis, 70 (2009), 4008.  doi: 10.1016/j.na.2008.08.010.  Google Scholar

[7]

J. Hale and J. Kato, Phase space for retarded equations with unbounded delay,, Funkcial Ekvac, 21 (1978), 11.   Google Scholar

[8]

Y. Hino, S. Murakami and T. Naito, "Functional Differential Equations with Infinite Delay,", \textbf{1473}, 1473 (1991).   Google Scholar

[9]

T. Naito, J. S. Shin and S. Murakami, On solution semigroups of general functional differential equations,, Nonlinear Analysis, 30 (1997), 4565.  doi: 10.1016/S0362-546X(97)00315-5.  Google Scholar

[10]

T. Naito, J. S. Shin and S. Murakami, On stability of solutions in linear autonomous functional differential equations,, Funkcialaj Ekvacioj, 43 (2000), 323.   Google Scholar

[11]

T. Naito, J. S. Shin and S. Murakami, The generator of the solution semigroup for the general linear functional differential equation,, Bull. Univ.Electro-Communications, 11 (1998), 29.   Google Scholar

[12]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", \textbf{44}, 44 (1983).   Google Scholar

[13]

C. C. Travis and G. F. Webb, Partial differential equations with deviating arguments in the time variable,, Journal of Mathematical Analysis and Applications, 56 (1976), 397.  doi: 10.1016/0022-247X(76)90052-4.  Google Scholar

[14]

C. C. Travis and G. F. Webb, Existence, stability and compactness in the $\alpha-$norm for partial functional differential equations,, Transactions of the American Mathematical Society, 240 (1978), 129.  doi: 10.2307/1998809.  Google Scholar

[15]

J. Wu, "Theory and Applications of Partial Functional Differential Equations,", \textbf{119}, 119 (1996).   Google Scholar

show all references

References:
[1]

M. Adimy, A. Elazzouzi and K. Ezzinbi, Reduction principe and dynamic behaviors for a class of partial functional differential equations,, Nonlinear Analysis, 71 (2009), 1709.  doi: 10.1016/j.na.2009.01.008.  Google Scholar

[2]

R. Benkhalti and K. Ezzinbi, Existence and stability in the $\alpha$-norm for some partial functinal differential equations with infinite delay,, Differential and Integral Equations, 19 (2006), 545.   Google Scholar

[3]

O . Diekmann, S. A. Van Gils, S. M. Verduyn Lunel and H. O. walther, "Delay Equations, Functional, Complex and Nonlinear Analysis,", \textbf{110}, 110 (1995).   Google Scholar

[4]

K. J. Engel and R. Nagel, "One-Parameter Semigroups of Linear Evolution Equations,", \textbf{194}, 194 (2000).   Google Scholar

[5]

K. Ezzinbi and A. Ouhinou, Necessary and sufficient conditions for the regularity and stability for some partial functional differential equations with infinite delay,, Nonlienar Analysis, 64 (2006), 1690.  doi: 10.1016/j.na.2005.07.017.  Google Scholar

[6]

K. Ezzinbi and A. Ouhinou, Stability and asymptotic behavior of solutions for some linear partial functional differential equations in critical cases,, Nonlienar Analysis, 70 (2009), 4008.  doi: 10.1016/j.na.2008.08.010.  Google Scholar

[7]

J. Hale and J. Kato, Phase space for retarded equations with unbounded delay,, Funkcial Ekvac, 21 (1978), 11.   Google Scholar

[8]

Y. Hino, S. Murakami and T. Naito, "Functional Differential Equations with Infinite Delay,", \textbf{1473}, 1473 (1991).   Google Scholar

[9]

T. Naito, J. S. Shin and S. Murakami, On solution semigroups of general functional differential equations,, Nonlinear Analysis, 30 (1997), 4565.  doi: 10.1016/S0362-546X(97)00315-5.  Google Scholar

[10]

T. Naito, J. S. Shin and S. Murakami, On stability of solutions in linear autonomous functional differential equations,, Funkcialaj Ekvacioj, 43 (2000), 323.   Google Scholar

[11]

T. Naito, J. S. Shin and S. Murakami, The generator of the solution semigroup for the general linear functional differential equation,, Bull. Univ.Electro-Communications, 11 (1998), 29.   Google Scholar

[12]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", \textbf{44}, 44 (1983).   Google Scholar

[13]

C. C. Travis and G. F. Webb, Partial differential equations with deviating arguments in the time variable,, Journal of Mathematical Analysis and Applications, 56 (1976), 397.  doi: 10.1016/0022-247X(76)90052-4.  Google Scholar

[14]

C. C. Travis and G. F. Webb, Existence, stability and compactness in the $\alpha-$norm for partial functional differential equations,, Transactions of the American Mathematical Society, 240 (1978), 129.  doi: 10.2307/1998809.  Google Scholar

[15]

J. Wu, "Theory and Applications of Partial Functional Differential Equations,", \textbf{119}, 119 (1996).   Google Scholar

[1]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[2]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[3]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[4]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[5]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[6]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[7]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[8]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[9]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[10]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[11]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[12]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[13]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[14]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[15]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[16]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[17]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[18]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[19]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[20]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]