-
Previous Article
New entropy conditions for scalar conservation laws with discontinuous flux
- DCDS Home
- This Issue
-
Next Article
Some remarks for a modified periodic Camassa-Holm system
A directional uniformity of periodic point distribution and mixing
1. | School of Mathematics, University of East Anglia, Norwich, NR4 7TJ, United Kingdom |
References:
[1] |
A. Baker, Linear forms in the logarithms of algebraic numbers. IV, Mathematika, 15 (1968), 204-216.
doi: 10.1112/S0025579300002588. |
[2] |
R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms," Lecture Notes in Mathematics, 470, Springer-Verlag, Berlin, 1975. |
[3] |
M. Boyle and D. Lind, Expansive subdynamics, Trans. Amer. Math. Soc., 349 (1997), 55-102.
doi: 10.1090/S0002-9947-97-01634-6. |
[4] |
M. Einsiedler, M. Kapranov and D. Lind, Non-Archimedean amoebas and tropical varieties, J. Reine Angew. Math., 601 (2006), 139-157.
doi: 10.1515/CRELLE.2006.097. |
[5] |
M. Einsiedler and D. Lind, Algebraic $\mathbb Z^d$-actions of entropy rank one, Trans. Amer. Math. Soc., 356 (2004), 1799-1831.
doi: 10.1090/S0002-9947-04-03554-8. |
[6] |
M. Einsiedler, D. Lind, R. Miles and T. Ward, Expansive subdynamics for algebraic $\mathbb Z^d$-actions, Ergodic Theory Dynam. Systems, 21 (2001), 1695-1729.
doi: 10.1017/S014338570100181X. |
[7] |
Bruce Kitchens and K. Schmidt, Automorphisms of compact groups, Ergodic Theory Dynam. Systems, 9 (1989), 691-735. |
[8] |
F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978), A561-A563. |
[9] |
D. A. Lind, Dynamical properties of quasihyperbolic toral automorphisms, Ergodic Theory Dynamical Systems, 2 (1982), 49-68.
doi: 10.1017/S0143385700009573. |
[10] |
R. Miles, Zeta functions for elements of entropy rank-one actions, Ergodic Theory Dynam. Systems, 27 (2007), 567-582.
doi: 10.1017/S0143385706000794. |
[11] |
R. Miles and T. Ward, Periodic point data detects subdynamics in entropy rank one, Ergodic Theory Dynam. Systems, 26 (2006), 1913-1930.
doi: 10.1017/S014338570600054X. |
[12] |
R. Miles and T. Ward, Uniform periodic point growth in entropy rank one, Proc. Amer. Math. Soc., 136 (2008), 359-365.
doi: 10.1090/S0002-9939-07-09018-1. |
[13] |
K. Schmidt, "Dynamical Systems of Algebraic Origin," Progress in Mathematics, 128 Birkhäuser Verlag, Basel, 1995. |
[14] |
T. Ward, The Bernoulli property for expansive $\mathbb Z$2 actions on compact groups, Israel J. Math., 79 (1992), 225-249.
doi: 10.1007/BF02808217. |
[15] |
K. R. Yu, Linear forms in p-adic logarithms. II, Compositio Math., 74 (1990), 15-113. |
show all references
References:
[1] |
A. Baker, Linear forms in the logarithms of algebraic numbers. IV, Mathematika, 15 (1968), 204-216.
doi: 10.1112/S0025579300002588. |
[2] |
R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms," Lecture Notes in Mathematics, 470, Springer-Verlag, Berlin, 1975. |
[3] |
M. Boyle and D. Lind, Expansive subdynamics, Trans. Amer. Math. Soc., 349 (1997), 55-102.
doi: 10.1090/S0002-9947-97-01634-6. |
[4] |
M. Einsiedler, M. Kapranov and D. Lind, Non-Archimedean amoebas and tropical varieties, J. Reine Angew. Math., 601 (2006), 139-157.
doi: 10.1515/CRELLE.2006.097. |
[5] |
M. Einsiedler and D. Lind, Algebraic $\mathbb Z^d$-actions of entropy rank one, Trans. Amer. Math. Soc., 356 (2004), 1799-1831.
doi: 10.1090/S0002-9947-04-03554-8. |
[6] |
M. Einsiedler, D. Lind, R. Miles and T. Ward, Expansive subdynamics for algebraic $\mathbb Z^d$-actions, Ergodic Theory Dynam. Systems, 21 (2001), 1695-1729.
doi: 10.1017/S014338570100181X. |
[7] |
Bruce Kitchens and K. Schmidt, Automorphisms of compact groups, Ergodic Theory Dynam. Systems, 9 (1989), 691-735. |
[8] |
F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978), A561-A563. |
[9] |
D. A. Lind, Dynamical properties of quasihyperbolic toral automorphisms, Ergodic Theory Dynamical Systems, 2 (1982), 49-68.
doi: 10.1017/S0143385700009573. |
[10] |
R. Miles, Zeta functions for elements of entropy rank-one actions, Ergodic Theory Dynam. Systems, 27 (2007), 567-582.
doi: 10.1017/S0143385706000794. |
[11] |
R. Miles and T. Ward, Periodic point data detects subdynamics in entropy rank one, Ergodic Theory Dynam. Systems, 26 (2006), 1913-1930.
doi: 10.1017/S014338570600054X. |
[12] |
R. Miles and T. Ward, Uniform periodic point growth in entropy rank one, Proc. Amer. Math. Soc., 136 (2008), 359-365.
doi: 10.1090/S0002-9939-07-09018-1. |
[13] |
K. Schmidt, "Dynamical Systems of Algebraic Origin," Progress in Mathematics, 128 Birkhäuser Verlag, Basel, 1995. |
[14] |
T. Ward, The Bernoulli property for expansive $\mathbb Z$2 actions on compact groups, Israel J. Math., 79 (1992), 225-249.
doi: 10.1007/BF02808217. |
[15] |
K. R. Yu, Linear forms in p-adic logarithms. II, Compositio Math., 74 (1990), 15-113. |
[1] |
Richard Miles, Thomas Ward. Directional uniformities, periodic points, and entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3525-3545. doi: 10.3934/dcdsb.2015.20.3525 |
[2] |
Zhiming Li, Yujun Zhu. Entropies of commuting transformations on Hilbert spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5795-5814. doi: 10.3934/dcds.2020246 |
[3] |
Ralf Spatzier, Lei Yang. Exponential mixing and smooth classification of commuting expanding maps. Journal of Modern Dynamics, 2017, 11: 263-312. doi: 10.3934/jmd.2017012 |
[4] |
Rui Kuang, Xiangdong Ye. The return times set and mixing for measure preserving transformations. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 817-827. doi: 10.3934/dcds.2007.18.817 |
[5] |
Makoto Mori. Higher order mixing property of piecewise linear transformations. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 915-934. doi: 10.3934/dcds.2000.6.915 |
[6] |
Vadim Yu. Kaloshin and Brian R. Hunt. A stretched exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms II. Electronic Research Announcements, 2001, 7: 28-36. |
[7] |
Vadim Yu. Kaloshin and Brian R. Hunt. A stretched exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms I. Electronic Research Announcements, 2001, 7: 17-27. |
[8] |
Sanghoon Kwon, Seonhee Lim. Equidistribution with an error rate and Diophantine approximation over a local field of positive characteristic. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 169-186. doi: 10.3934/dcds.2018008 |
[9] |
Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547 |
[10] |
Benoît Saussol. Recurrence rate in rapidly mixing dynamical systems. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 259-267. doi: 10.3934/dcds.2006.15.259 |
[11] |
Corinna Ulcigrai. Weak mixing for logarithmic flows over interval exchange transformations. Journal of Modern Dynamics, 2009, 3 (1) : 35-49. doi: 10.3934/jmd.2009.3.35 |
[12] |
K. H. Kim, F. W. Roush and J. B. Wagoner. Inert actions on periodic points. Electronic Research Announcements, 1997, 3: 55-62. |
[13] |
Charles Pugh, Michael Shub. Periodic points on the $2$-sphere. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1171-1182. doi: 10.3934/dcds.2014.34.1171 |
[14] |
Isaac A. García, Jaume Giné, Susanna Maza. Linearization of smooth planar vector fields around singular points via commuting flows. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1415-1428. doi: 10.3934/cpaa.2008.7.1415 |
[15] |
Samuel C. Edwards. On the rate of equidistribution of expanding horospheres in finite-volume quotients of SL(2, ${\mathbb{C}}$). Journal of Modern Dynamics, 2017, 11: 155-188. doi: 10.3934/jmd.2017008 |
[16] |
John Erik Fornæss. Periodic points of holomorphic twist maps. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1047-1056. doi: 10.3934/dcds.2005.13.1047 |
[17] |
Anna Gierzkiewicz, Klaudiusz Wójcik. Lefschetz sequences and detecting periodic points. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 81-100. doi: 10.3934/dcds.2012.32.81 |
[18] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[19] |
Fei Liu, Xiaokai Liu, Fang Wang. On the mixing and Bernoulli properties for geodesic flows on rank 1 manifolds without focal points. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4791-4804. doi: 10.3934/dcds.2021057 |
[20] |
Juan Campos, Rafael Ortega. Location of fixed points and periodic solutions in the plane. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 517-523. doi: 10.3934/dcdsb.2008.9.517 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]