Citation: |
[1] |
A. Baker, Linear forms in the logarithms of algebraic numbers. IV, Mathematika, 15 (1968), 204-216.doi: 10.1112/S0025579300002588. |
[2] |
R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms," Lecture Notes in Mathematics, 470, Springer-Verlag, Berlin, 1975. |
[3] |
M. Boyle and D. Lind, Expansive subdynamics, Trans. Amer. Math. Soc., 349 (1997), 55-102.doi: 10.1090/S0002-9947-97-01634-6. |
[4] |
M. Einsiedler, M. Kapranov and D. Lind, Non-Archimedean amoebas and tropical varieties, J. Reine Angew. Math., 601 (2006), 139-157.doi: 10.1515/CRELLE.2006.097. |
[5] |
M. Einsiedler and D. Lind, Algebraic $\mathbb Z^d$-actions of entropy rank one, Trans. Amer. Math. Soc., 356 (2004), 1799-1831.doi: 10.1090/S0002-9947-04-03554-8. |
[6] |
M. Einsiedler, D. Lind, R. Miles and T. Ward, Expansive subdynamics for algebraic $\mathbb Z^d$-actions, Ergodic Theory Dynam. Systems, 21 (2001), 1695-1729.doi: 10.1017/S014338570100181X. |
[7] |
Bruce Kitchens and K. Schmidt, Automorphisms of compact groups, Ergodic Theory Dynam. Systems, 9 (1989), 691-735. |
[8] |
F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978), A561-A563. |
[9] |
D. A. Lind, Dynamical properties of quasihyperbolic toral automorphisms, Ergodic Theory Dynamical Systems, 2 (1982), 49-68.doi: 10.1017/S0143385700009573. |
[10] |
R. Miles, Zeta functions for elements of entropy rank-one actions, Ergodic Theory Dynam. Systems, 27 (2007), 567-582.doi: 10.1017/S0143385706000794. |
[11] |
R. Miles and T. Ward, Periodic point data detects subdynamics in entropy rank one, Ergodic Theory Dynam. Systems, 26 (2006), 1913-1930.doi: 10.1017/S014338570600054X. |
[12] |
R. Miles and T. Ward, Uniform periodic point growth in entropy rank one, Proc. Amer. Math. Soc., 136 (2008), 359-365.doi: 10.1090/S0002-9939-07-09018-1. |
[13] |
K. Schmidt, "Dynamical Systems of Algebraic Origin," Progress in Mathematics, 128 Birkhäuser Verlag, Basel, 1995. |
[14] |
T. Ward, The Bernoulli property for expansive $\mathbb Z$2 actions on compact groups, Israel J. Math., 79 (1992), 225-249.doi: 10.1007/BF02808217. |
[15] |
K. R. Yu, Linear forms in p-adic logarithms. II, Compositio Math., 74 (1990), 15-113. |