November  2011, 30(4): 1191-1210. doi: 10.3934/dcds.2011.30.1191

New entropy conditions for scalar conservation laws with discontinuous flux

1. 

Faculty of Mathematics, University of Montenegro, Cetinjski put bb, 81000 Podgorica

Received  April 2010 Revised  July 2010 Published  May 2011

We propose new Kruzhkov type entropy conditions for one dimensional scalar conservation law with a discontinuous flux. We prove existence and uniqueness of the entropy admissible weak solution to the corresponding Cauchy problem merely under assumptions on the flux which provide the maximum principle. In particular, we allow multiple flux crossings and we do not need any kind of genuine nonlinearity conditions.
Citation: Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191
References:
[1]

Adimurthi, G. D. Veerappa Gowda, Conservation laws with discontinuous flux,, J. Math. (Kyoto University), 43 (2003), 27.   Google Scholar

[2]

Adimurthi, S. Mishra and G. D. Veerappa Gowda, Optimal entropy solutions for conservation laws with discontinuous flux functions,, J. of Hyperbolic Differ. Equ., 2 (2005), 783.  doi: 10.1142/S0219891605000622.  Google Scholar

[3]

Adimurthi, S. Mishra and G. D. Veerappa Gowda, Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes,, Netw. Heterog. Media, 2 (2007), 127.  doi: 10.3934/nhm.2007.2.127.  Google Scholar

[4]

J. Aleksic and D. Mitrovic, On the compactness for two dimensional scalar conservation law with discontinuous flux,, Comm. Math. Sciences, 4 (2009), 963.   Google Scholar

[5]

B. Andreianov, K. H. Karlsena and N. H. Risebro, On vanishing viscosity approximation of conservation laws with discontinuous flux,, preprint. Available from: , ().   Google Scholar

[6]

E. Audusse and B. Perthame, Uniqueness for scalar conservation law via adapted entropies,, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 253.  doi: 10.1017/S0308210500003863.  Google Scholar

[7]

F. Bachmann and J. Vovelle, Existence and uniqueness of entropy solution of scalar conservation law with a flux function involving discontinuous coefficients,, Comm. Partial Differential Equations, 31 (2006), 371.  doi: 10.1080/03605300500358095.  Google Scholar

[8]

R. Burger, K. H. Karlsen and J. Towers, On Enquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections,, SIAM J. Numer. Anal., 3 (2009), 1684.  doi: 10.1137/07069314X.  Google Scholar

[9]

R. Burger, A. Garcia, K. H. Karlsen and J. Towers, A family of schemes for kinematic flows with discontinuous flux,, J. Engrg. Math., 60 (2008), 387.  doi: 10.1007/s10665-007-9148-4.  Google Scholar

[10]

S. Diehl, On scalar conservation law with point source and discontinuous flux function modelling continuous sedimentation,, SIAM J. Math. Anal., 6 (1995), 1425.  doi: 10.1137/S0036141093242533.  Google Scholar

[11]

S. Diehl, A conservation law with point source and discontinuous flux function modelling continuous sedimentation,, SIAM J. Appl. Anal., 2 (1996), 388.   Google Scholar

[12]

S. Diehl, A uniqueness condition for non-linear convection-diffusion equations with discontinuous coefficients,, J. Hyperbolic Diff. Eq., 6 (2009), 127.  doi: 10.1142/S0219891609001794.  Google Scholar

[13]

R. J. DiPerna, Measure-valued solutions to conservation laws,, Arch. Ration. Mech. Anal., 88 (1985), 223.  doi: 10.1007/BF00752112.  Google Scholar

[14]

L. C. Evans, "Weak Convergence Methods in Nonlinear Partial Differential Equations,", AMS, 74 (1990).   Google Scholar

[15]

H. Holden, K. Karlsen and D. Mitrovic, Zero diffusion dispersion limits for a scalar conservation law with discontinuous flux function,, International Journal of Differential Equations, (2009) (2009).  doi: 10.1155/2009/279818.  Google Scholar

[16]

P. Gerard, Microlocal defect measures,, Comm. Partial Differential Equations, 11 (1991), 1761.  doi: 10.1080/03605309108820822.  Google Scholar

[17]

T. Gimse and N. H. Risebro, Riemann problems with discontinuous flux function,, in Proc. 3rd Int. Conf. Hyperbolic Problems Studentlitteratur, (1991), 488.   Google Scholar

[18]

E. Kaasschieter, Solving the Buckley-Leverret equation with gravity in a heterogeneous porous media,, Comput. Geosci., 3 (1999), 23.  doi: 10.1023/A:1011574824970.  Google Scholar

[19]

K. H. Karslen, N. H. Risebro and J. Towers, $L$1-stability for entropy solutions of nonlinear degenerate parabolic connection-diffusion equations with disc. coeff.,, Skr. K. Nor. Vid. Selsk, 3 (2003), 1.   Google Scholar

[20]

K. Karlsen, N. H. Risebro and J. Towers, On a nonlin. degenerate parabolic transport-diff. eq. with a disc. coeff.,, Electronic J. of Differential Equations, 2002 ().   Google Scholar

[21]

K. Karlsen, M. Rascle and E. Tadmor, On the existence and compactness of a two-dimensional resonant system of conservation laws,, Communications in Mathematical Sciences 2 (2007), 2 (2007), 253.   Google Scholar

[22]

K. Karlsen and J. Towers, Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinous space-time dependent flux,, Chinese Ann. Math. Ser. B, 3 (2004), 287.  doi: 10.1142/S0252959904000299.  Google Scholar

[23]

S. N. Kruzhkov, First order quasilinear equations in several independent variables,, Mat. Sb., 81 (1970), 217.  doi: 10.1070/SM1970v010n02ABEH002156.  Google Scholar

[24]

Y. S. Kwon and A. Vasseur, Strong traces for scalar conservation laws with general flux,, Arch. Rat. Mech. Anal., 3 (2007), 495.  doi: 10.1007/s00205-007-0055-7.  Google Scholar

[25]

P. L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidim. scalar cons. law and related equations,, J. Amer. Math. Soc., 1 (1994), 169.  doi: 10.1090/S0894-0347-1994-1201239-3.  Google Scholar

[26]

D. Mitrovic, Estence amd stability of a multidimensional scalar conservation law with discontinuous flux,, Netw. Het. Media, 5 (2010), 163.  doi: 10.3934/nhm.2010.5.163.  Google Scholar

[27]

E. Yu. Panov, Existence of Strong Traces for Quasi-Solutions of Multidimensional Conservation Laws,, J. of Hyperbolic Differential Equations, 4 (2007), 729.  doi: 10.1142/S0219891607001343.  Google Scholar

[28]

E. Yu. Panov, On existence and uniqueness of entropy solutions to the Cauchy problem for a conservation law with discontinuous flux,, J. of Hyperbolic Differential Equations, 3 (2009), 525.  doi: 10.1142/S0219891609001915.  Google Scholar

[29]

E. Yu. Panov, On weak completeness of the set of entropy solutions to a scalar conservation law,, SIAM J. Math. Anal., 1 (2009), 26.  doi: 10.1137/080724587.  Google Scholar

[30]

E. Yu. Panov, Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux,, Arch. Rational Mech. Anal., 195 (2010), 643.  doi: 10.1007/s00205-009-0217-x.  Google Scholar

[31]

P. Pedregal, "Parametrized Measures and Variational Principles,", Progress in Nonlinear Partial Differential Equations and Their Applications, 30 (1997).   Google Scholar

[32]

B. Perthame, Kinetic approach to systems of conservation laws,, Journées équations aux derivées partielles, (1992).   Google Scholar

[33]

L. Tartar, Comp. compactness and application to PDEs,, Nonlin. Anal. and Mech.: Heriot-Watt symposium, IV (1979).   Google Scholar

[34]

L. Tartar, H-measures, a new approach for studying homogenisation, oscillation and concentration effects in PDEs,, Proc. Roy. Soc. Edinburgh. Sect. A, 3-4 (1990), 3.   Google Scholar

[35]

B. Temple, Global solution of the Cauchy problem for a class of 2x2 nonstrictly hyperbolic conservation laws,, Adv. in Appl. Math., 3 (1982), 335.  doi: 10.1016/S0196-8858(82)80010-9.  Google Scholar

[36]

A. Vasseur, Strong traces for solutions of multidimensional conservation laws,, Arch. Rat. Mech. Anal., 160 (2001), 181.  doi: 10.1007/s002050100157.  Google Scholar

show all references

References:
[1]

Adimurthi, G. D. Veerappa Gowda, Conservation laws with discontinuous flux,, J. Math. (Kyoto University), 43 (2003), 27.   Google Scholar

[2]

Adimurthi, S. Mishra and G. D. Veerappa Gowda, Optimal entropy solutions for conservation laws with discontinuous flux functions,, J. of Hyperbolic Differ. Equ., 2 (2005), 783.  doi: 10.1142/S0219891605000622.  Google Scholar

[3]

Adimurthi, S. Mishra and G. D. Veerappa Gowda, Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes,, Netw. Heterog. Media, 2 (2007), 127.  doi: 10.3934/nhm.2007.2.127.  Google Scholar

[4]

J. Aleksic and D. Mitrovic, On the compactness for two dimensional scalar conservation law with discontinuous flux,, Comm. Math. Sciences, 4 (2009), 963.   Google Scholar

[5]

B. Andreianov, K. H. Karlsena and N. H. Risebro, On vanishing viscosity approximation of conservation laws with discontinuous flux,, preprint. Available from: , ().   Google Scholar

[6]

E. Audusse and B. Perthame, Uniqueness for scalar conservation law via adapted entropies,, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 253.  doi: 10.1017/S0308210500003863.  Google Scholar

[7]

F. Bachmann and J. Vovelle, Existence and uniqueness of entropy solution of scalar conservation law with a flux function involving discontinuous coefficients,, Comm. Partial Differential Equations, 31 (2006), 371.  doi: 10.1080/03605300500358095.  Google Scholar

[8]

R. Burger, K. H. Karlsen and J. Towers, On Enquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections,, SIAM J. Numer. Anal., 3 (2009), 1684.  doi: 10.1137/07069314X.  Google Scholar

[9]

R. Burger, A. Garcia, K. H. Karlsen and J. Towers, A family of schemes for kinematic flows with discontinuous flux,, J. Engrg. Math., 60 (2008), 387.  doi: 10.1007/s10665-007-9148-4.  Google Scholar

[10]

S. Diehl, On scalar conservation law with point source and discontinuous flux function modelling continuous sedimentation,, SIAM J. Math. Anal., 6 (1995), 1425.  doi: 10.1137/S0036141093242533.  Google Scholar

[11]

S. Diehl, A conservation law with point source and discontinuous flux function modelling continuous sedimentation,, SIAM J. Appl. Anal., 2 (1996), 388.   Google Scholar

[12]

S. Diehl, A uniqueness condition for non-linear convection-diffusion equations with discontinuous coefficients,, J. Hyperbolic Diff. Eq., 6 (2009), 127.  doi: 10.1142/S0219891609001794.  Google Scholar

[13]

R. J. DiPerna, Measure-valued solutions to conservation laws,, Arch. Ration. Mech. Anal., 88 (1985), 223.  doi: 10.1007/BF00752112.  Google Scholar

[14]

L. C. Evans, "Weak Convergence Methods in Nonlinear Partial Differential Equations,", AMS, 74 (1990).   Google Scholar

[15]

H. Holden, K. Karlsen and D. Mitrovic, Zero diffusion dispersion limits for a scalar conservation law with discontinuous flux function,, International Journal of Differential Equations, (2009) (2009).  doi: 10.1155/2009/279818.  Google Scholar

[16]

P. Gerard, Microlocal defect measures,, Comm. Partial Differential Equations, 11 (1991), 1761.  doi: 10.1080/03605309108820822.  Google Scholar

[17]

T. Gimse and N. H. Risebro, Riemann problems with discontinuous flux function,, in Proc. 3rd Int. Conf. Hyperbolic Problems Studentlitteratur, (1991), 488.   Google Scholar

[18]

E. Kaasschieter, Solving the Buckley-Leverret equation with gravity in a heterogeneous porous media,, Comput. Geosci., 3 (1999), 23.  doi: 10.1023/A:1011574824970.  Google Scholar

[19]

K. H. Karslen, N. H. Risebro and J. Towers, $L$1-stability for entropy solutions of nonlinear degenerate parabolic connection-diffusion equations with disc. coeff.,, Skr. K. Nor. Vid. Selsk, 3 (2003), 1.   Google Scholar

[20]

K. Karlsen, N. H. Risebro and J. Towers, On a nonlin. degenerate parabolic transport-diff. eq. with a disc. coeff.,, Electronic J. of Differential Equations, 2002 ().   Google Scholar

[21]

K. Karlsen, M. Rascle and E. Tadmor, On the existence and compactness of a two-dimensional resonant system of conservation laws,, Communications in Mathematical Sciences 2 (2007), 2 (2007), 253.   Google Scholar

[22]

K. Karlsen and J. Towers, Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinous space-time dependent flux,, Chinese Ann. Math. Ser. B, 3 (2004), 287.  doi: 10.1142/S0252959904000299.  Google Scholar

[23]

S. N. Kruzhkov, First order quasilinear equations in several independent variables,, Mat. Sb., 81 (1970), 217.  doi: 10.1070/SM1970v010n02ABEH002156.  Google Scholar

[24]

Y. S. Kwon and A. Vasseur, Strong traces for scalar conservation laws with general flux,, Arch. Rat. Mech. Anal., 3 (2007), 495.  doi: 10.1007/s00205-007-0055-7.  Google Scholar

[25]

P. L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidim. scalar cons. law and related equations,, J. Amer. Math. Soc., 1 (1994), 169.  doi: 10.1090/S0894-0347-1994-1201239-3.  Google Scholar

[26]

D. Mitrovic, Estence amd stability of a multidimensional scalar conservation law with discontinuous flux,, Netw. Het. Media, 5 (2010), 163.  doi: 10.3934/nhm.2010.5.163.  Google Scholar

[27]

E. Yu. Panov, Existence of Strong Traces for Quasi-Solutions of Multidimensional Conservation Laws,, J. of Hyperbolic Differential Equations, 4 (2007), 729.  doi: 10.1142/S0219891607001343.  Google Scholar

[28]

E. Yu. Panov, On existence and uniqueness of entropy solutions to the Cauchy problem for a conservation law with discontinuous flux,, J. of Hyperbolic Differential Equations, 3 (2009), 525.  doi: 10.1142/S0219891609001915.  Google Scholar

[29]

E. Yu. Panov, On weak completeness of the set of entropy solutions to a scalar conservation law,, SIAM J. Math. Anal., 1 (2009), 26.  doi: 10.1137/080724587.  Google Scholar

[30]

E. Yu. Panov, Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux,, Arch. Rational Mech. Anal., 195 (2010), 643.  doi: 10.1007/s00205-009-0217-x.  Google Scholar

[31]

P. Pedregal, "Parametrized Measures and Variational Principles,", Progress in Nonlinear Partial Differential Equations and Their Applications, 30 (1997).   Google Scholar

[32]

B. Perthame, Kinetic approach to systems of conservation laws,, Journées équations aux derivées partielles, (1992).   Google Scholar

[33]

L. Tartar, Comp. compactness and application to PDEs,, Nonlin. Anal. and Mech.: Heriot-Watt symposium, IV (1979).   Google Scholar

[34]

L. Tartar, H-measures, a new approach for studying homogenisation, oscillation and concentration effects in PDEs,, Proc. Roy. Soc. Edinburgh. Sect. A, 3-4 (1990), 3.   Google Scholar

[35]

B. Temple, Global solution of the Cauchy problem for a class of 2x2 nonstrictly hyperbolic conservation laws,, Adv. in Appl. Math., 3 (1982), 335.  doi: 10.1016/S0196-8858(82)80010-9.  Google Scholar

[36]

A. Vasseur, Strong traces for solutions of multidimensional conservation laws,, Arch. Rat. Mech. Anal., 160 (2001), 181.  doi: 10.1007/s002050100157.  Google Scholar

[1]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

[2]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[3]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[4]

Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021009

[5]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[6]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[7]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[8]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[9]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[10]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[11]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[12]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[13]

Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021017

[14]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[15]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[16]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[17]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[18]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[19]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[20]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]