November  2011, 30(4): 1191-1210. doi: 10.3934/dcds.2011.30.1191

New entropy conditions for scalar conservation laws with discontinuous flux

1. 

Faculty of Mathematics, University of Montenegro, Cetinjski put bb, 81000 Podgorica

Received  April 2010 Revised  July 2010 Published  May 2011

We propose new Kruzhkov type entropy conditions for one dimensional scalar conservation law with a discontinuous flux. We prove existence and uniqueness of the entropy admissible weak solution to the corresponding Cauchy problem merely under assumptions on the flux which provide the maximum principle. In particular, we allow multiple flux crossings and we do not need any kind of genuine nonlinearity conditions.
Citation: Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191
References:
[1]

Adimurthi, G. D. Veerappa Gowda, Conservation laws with discontinuous flux,, J. Math. (Kyoto University), 43 (2003), 27.   Google Scholar

[2]

Adimurthi, S. Mishra and G. D. Veerappa Gowda, Optimal entropy solutions for conservation laws with discontinuous flux functions,, J. of Hyperbolic Differ. Equ., 2 (2005), 783.  doi: 10.1142/S0219891605000622.  Google Scholar

[3]

Adimurthi, S. Mishra and G. D. Veerappa Gowda, Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes,, Netw. Heterog. Media, 2 (2007), 127.  doi: 10.3934/nhm.2007.2.127.  Google Scholar

[4]

J. Aleksic and D. Mitrovic, On the compactness for two dimensional scalar conservation law with discontinuous flux,, Comm. Math. Sciences, 4 (2009), 963.   Google Scholar

[5]

B. Andreianov, K. H. Karlsena and N. H. Risebro, On vanishing viscosity approximation of conservation laws with discontinuous flux,, preprint. Available from: , ().   Google Scholar

[6]

E. Audusse and B. Perthame, Uniqueness for scalar conservation law via adapted entropies,, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 253.  doi: 10.1017/S0308210500003863.  Google Scholar

[7]

F. Bachmann and J. Vovelle, Existence and uniqueness of entropy solution of scalar conservation law with a flux function involving discontinuous coefficients,, Comm. Partial Differential Equations, 31 (2006), 371.  doi: 10.1080/03605300500358095.  Google Scholar

[8]

R. Burger, K. H. Karlsen and J. Towers, On Enquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections,, SIAM J. Numer. Anal., 3 (2009), 1684.  doi: 10.1137/07069314X.  Google Scholar

[9]

R. Burger, A. Garcia, K. H. Karlsen and J. Towers, A family of schemes for kinematic flows with discontinuous flux,, J. Engrg. Math., 60 (2008), 387.  doi: 10.1007/s10665-007-9148-4.  Google Scholar

[10]

S. Diehl, On scalar conservation law with point source and discontinuous flux function modelling continuous sedimentation,, SIAM J. Math. Anal., 6 (1995), 1425.  doi: 10.1137/S0036141093242533.  Google Scholar

[11]

S. Diehl, A conservation law with point source and discontinuous flux function modelling continuous sedimentation,, SIAM J. Appl. Anal., 2 (1996), 388.   Google Scholar

[12]

S. Diehl, A uniqueness condition for non-linear convection-diffusion equations with discontinuous coefficients,, J. Hyperbolic Diff. Eq., 6 (2009), 127.  doi: 10.1142/S0219891609001794.  Google Scholar

[13]

R. J. DiPerna, Measure-valued solutions to conservation laws,, Arch. Ration. Mech. Anal., 88 (1985), 223.  doi: 10.1007/BF00752112.  Google Scholar

[14]

L. C. Evans, "Weak Convergence Methods in Nonlinear Partial Differential Equations,", AMS, 74 (1990).   Google Scholar

[15]

H. Holden, K. Karlsen and D. Mitrovic, Zero diffusion dispersion limits for a scalar conservation law with discontinuous flux function,, International Journal of Differential Equations, (2009) (2009).  doi: 10.1155/2009/279818.  Google Scholar

[16]

P. Gerard, Microlocal defect measures,, Comm. Partial Differential Equations, 11 (1991), 1761.  doi: 10.1080/03605309108820822.  Google Scholar

[17]

T. Gimse and N. H. Risebro, Riemann problems with discontinuous flux function,, in Proc. 3rd Int. Conf. Hyperbolic Problems Studentlitteratur, (1991), 488.   Google Scholar

[18]

E. Kaasschieter, Solving the Buckley-Leverret equation with gravity in a heterogeneous porous media,, Comput. Geosci., 3 (1999), 23.  doi: 10.1023/A:1011574824970.  Google Scholar

[19]

K. H. Karslen, N. H. Risebro and J. Towers, $L$1-stability for entropy solutions of nonlinear degenerate parabolic connection-diffusion equations with disc. coeff.,, Skr. K. Nor. Vid. Selsk, 3 (2003), 1.   Google Scholar

[20]

K. Karlsen, N. H. Risebro and J. Towers, On a nonlin. degenerate parabolic transport-diff. eq. with a disc. coeff.,, Electronic J. of Differential Equations, 2002 ().   Google Scholar

[21]

K. Karlsen, M. Rascle and E. Tadmor, On the existence and compactness of a two-dimensional resonant system of conservation laws,, Communications in Mathematical Sciences 2 (2007), 2 (2007), 253.   Google Scholar

[22]

K. Karlsen and J. Towers, Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinous space-time dependent flux,, Chinese Ann. Math. Ser. B, 3 (2004), 287.  doi: 10.1142/S0252959904000299.  Google Scholar

[23]

S. N. Kruzhkov, First order quasilinear equations in several independent variables,, Mat. Sb., 81 (1970), 217.  doi: 10.1070/SM1970v010n02ABEH002156.  Google Scholar

[24]

Y. S. Kwon and A. Vasseur, Strong traces for scalar conservation laws with general flux,, Arch. Rat. Mech. Anal., 3 (2007), 495.  doi: 10.1007/s00205-007-0055-7.  Google Scholar

[25]

P. L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidim. scalar cons. law and related equations,, J. Amer. Math. Soc., 1 (1994), 169.  doi: 10.1090/S0894-0347-1994-1201239-3.  Google Scholar

[26]

D. Mitrovic, Estence amd stability of a multidimensional scalar conservation law with discontinuous flux,, Netw. Het. Media, 5 (2010), 163.  doi: 10.3934/nhm.2010.5.163.  Google Scholar

[27]

E. Yu. Panov, Existence of Strong Traces for Quasi-Solutions of Multidimensional Conservation Laws,, J. of Hyperbolic Differential Equations, 4 (2007), 729.  doi: 10.1142/S0219891607001343.  Google Scholar

[28]

E. Yu. Panov, On existence and uniqueness of entropy solutions to the Cauchy problem for a conservation law with discontinuous flux,, J. of Hyperbolic Differential Equations, 3 (2009), 525.  doi: 10.1142/S0219891609001915.  Google Scholar

[29]

E. Yu. Panov, On weak completeness of the set of entropy solutions to a scalar conservation law,, SIAM J. Math. Anal., 1 (2009), 26.  doi: 10.1137/080724587.  Google Scholar

[30]

E. Yu. Panov, Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux,, Arch. Rational Mech. Anal., 195 (2010), 643.  doi: 10.1007/s00205-009-0217-x.  Google Scholar

[31]

P. Pedregal, "Parametrized Measures and Variational Principles,", Progress in Nonlinear Partial Differential Equations and Their Applications, 30 (1997).   Google Scholar

[32]

B. Perthame, Kinetic approach to systems of conservation laws,, Journées équations aux derivées partielles, (1992).   Google Scholar

[33]

L. Tartar, Comp. compactness and application to PDEs,, Nonlin. Anal. and Mech.: Heriot-Watt symposium, IV (1979).   Google Scholar

[34]

L. Tartar, H-measures, a new approach for studying homogenisation, oscillation and concentration effects in PDEs,, Proc. Roy. Soc. Edinburgh. Sect. A, 3-4 (1990), 3.   Google Scholar

[35]

B. Temple, Global solution of the Cauchy problem for a class of 2x2 nonstrictly hyperbolic conservation laws,, Adv. in Appl. Math., 3 (1982), 335.  doi: 10.1016/S0196-8858(82)80010-9.  Google Scholar

[36]

A. Vasseur, Strong traces for solutions of multidimensional conservation laws,, Arch. Rat. Mech. Anal., 160 (2001), 181.  doi: 10.1007/s002050100157.  Google Scholar

show all references

References:
[1]

Adimurthi, G. D. Veerappa Gowda, Conservation laws with discontinuous flux,, J. Math. (Kyoto University), 43 (2003), 27.   Google Scholar

[2]

Adimurthi, S. Mishra and G. D. Veerappa Gowda, Optimal entropy solutions for conservation laws with discontinuous flux functions,, J. of Hyperbolic Differ. Equ., 2 (2005), 783.  doi: 10.1142/S0219891605000622.  Google Scholar

[3]

Adimurthi, S. Mishra and G. D. Veerappa Gowda, Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes,, Netw. Heterog. Media, 2 (2007), 127.  doi: 10.3934/nhm.2007.2.127.  Google Scholar

[4]

J. Aleksic and D. Mitrovic, On the compactness for two dimensional scalar conservation law with discontinuous flux,, Comm. Math. Sciences, 4 (2009), 963.   Google Scholar

[5]

B. Andreianov, K. H. Karlsena and N. H. Risebro, On vanishing viscosity approximation of conservation laws with discontinuous flux,, preprint. Available from: , ().   Google Scholar

[6]

E. Audusse and B. Perthame, Uniqueness for scalar conservation law via adapted entropies,, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 253.  doi: 10.1017/S0308210500003863.  Google Scholar

[7]

F. Bachmann and J. Vovelle, Existence and uniqueness of entropy solution of scalar conservation law with a flux function involving discontinuous coefficients,, Comm. Partial Differential Equations, 31 (2006), 371.  doi: 10.1080/03605300500358095.  Google Scholar

[8]

R. Burger, K. H. Karlsen and J. Towers, On Enquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections,, SIAM J. Numer. Anal., 3 (2009), 1684.  doi: 10.1137/07069314X.  Google Scholar

[9]

R. Burger, A. Garcia, K. H. Karlsen and J. Towers, A family of schemes for kinematic flows with discontinuous flux,, J. Engrg. Math., 60 (2008), 387.  doi: 10.1007/s10665-007-9148-4.  Google Scholar

[10]

S. Diehl, On scalar conservation law with point source and discontinuous flux function modelling continuous sedimentation,, SIAM J. Math. Anal., 6 (1995), 1425.  doi: 10.1137/S0036141093242533.  Google Scholar

[11]

S. Diehl, A conservation law with point source and discontinuous flux function modelling continuous sedimentation,, SIAM J. Appl. Anal., 2 (1996), 388.   Google Scholar

[12]

S. Diehl, A uniqueness condition for non-linear convection-diffusion equations with discontinuous coefficients,, J. Hyperbolic Diff. Eq., 6 (2009), 127.  doi: 10.1142/S0219891609001794.  Google Scholar

[13]

R. J. DiPerna, Measure-valued solutions to conservation laws,, Arch. Ration. Mech. Anal., 88 (1985), 223.  doi: 10.1007/BF00752112.  Google Scholar

[14]

L. C. Evans, "Weak Convergence Methods in Nonlinear Partial Differential Equations,", AMS, 74 (1990).   Google Scholar

[15]

H. Holden, K. Karlsen and D. Mitrovic, Zero diffusion dispersion limits for a scalar conservation law with discontinuous flux function,, International Journal of Differential Equations, (2009) (2009).  doi: 10.1155/2009/279818.  Google Scholar

[16]

P. Gerard, Microlocal defect measures,, Comm. Partial Differential Equations, 11 (1991), 1761.  doi: 10.1080/03605309108820822.  Google Scholar

[17]

T. Gimse and N. H. Risebro, Riemann problems with discontinuous flux function,, in Proc. 3rd Int. Conf. Hyperbolic Problems Studentlitteratur, (1991), 488.   Google Scholar

[18]

E. Kaasschieter, Solving the Buckley-Leverret equation with gravity in a heterogeneous porous media,, Comput. Geosci., 3 (1999), 23.  doi: 10.1023/A:1011574824970.  Google Scholar

[19]

K. H. Karslen, N. H. Risebro and J. Towers, $L$1-stability for entropy solutions of nonlinear degenerate parabolic connection-diffusion equations with disc. coeff.,, Skr. K. Nor. Vid. Selsk, 3 (2003), 1.   Google Scholar

[20]

K. Karlsen, N. H. Risebro and J. Towers, On a nonlin. degenerate parabolic transport-diff. eq. with a disc. coeff.,, Electronic J. of Differential Equations, 2002 ().   Google Scholar

[21]

K. Karlsen, M. Rascle and E. Tadmor, On the existence and compactness of a two-dimensional resonant system of conservation laws,, Communications in Mathematical Sciences 2 (2007), 2 (2007), 253.   Google Scholar

[22]

K. Karlsen and J. Towers, Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinous space-time dependent flux,, Chinese Ann. Math. Ser. B, 3 (2004), 287.  doi: 10.1142/S0252959904000299.  Google Scholar

[23]

S. N. Kruzhkov, First order quasilinear equations in several independent variables,, Mat. Sb., 81 (1970), 217.  doi: 10.1070/SM1970v010n02ABEH002156.  Google Scholar

[24]

Y. S. Kwon and A. Vasseur, Strong traces for scalar conservation laws with general flux,, Arch. Rat. Mech. Anal., 3 (2007), 495.  doi: 10.1007/s00205-007-0055-7.  Google Scholar

[25]

P. L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidim. scalar cons. law and related equations,, J. Amer. Math. Soc., 1 (1994), 169.  doi: 10.1090/S0894-0347-1994-1201239-3.  Google Scholar

[26]

D. Mitrovic, Estence amd stability of a multidimensional scalar conservation law with discontinuous flux,, Netw. Het. Media, 5 (2010), 163.  doi: 10.3934/nhm.2010.5.163.  Google Scholar

[27]

E. Yu. Panov, Existence of Strong Traces for Quasi-Solutions of Multidimensional Conservation Laws,, J. of Hyperbolic Differential Equations, 4 (2007), 729.  doi: 10.1142/S0219891607001343.  Google Scholar

[28]

E. Yu. Panov, On existence and uniqueness of entropy solutions to the Cauchy problem for a conservation law with discontinuous flux,, J. of Hyperbolic Differential Equations, 3 (2009), 525.  doi: 10.1142/S0219891609001915.  Google Scholar

[29]

E. Yu. Panov, On weak completeness of the set of entropy solutions to a scalar conservation law,, SIAM J. Math. Anal., 1 (2009), 26.  doi: 10.1137/080724587.  Google Scholar

[30]

E. Yu. Panov, Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux,, Arch. Rational Mech. Anal., 195 (2010), 643.  doi: 10.1007/s00205-009-0217-x.  Google Scholar

[31]

P. Pedregal, "Parametrized Measures and Variational Principles,", Progress in Nonlinear Partial Differential Equations and Their Applications, 30 (1997).   Google Scholar

[32]

B. Perthame, Kinetic approach to systems of conservation laws,, Journées équations aux derivées partielles, (1992).   Google Scholar

[33]

L. Tartar, Comp. compactness and application to PDEs,, Nonlin. Anal. and Mech.: Heriot-Watt symposium, IV (1979).   Google Scholar

[34]

L. Tartar, H-measures, a new approach for studying homogenisation, oscillation and concentration effects in PDEs,, Proc. Roy. Soc. Edinburgh. Sect. A, 3-4 (1990), 3.   Google Scholar

[35]

B. Temple, Global solution of the Cauchy problem for a class of 2x2 nonstrictly hyperbolic conservation laws,, Adv. in Appl. Math., 3 (1982), 335.  doi: 10.1016/S0196-8858(82)80010-9.  Google Scholar

[36]

A. Vasseur, Strong traces for solutions of multidimensional conservation laws,, Arch. Rat. Mech. Anal., 160 (2001), 181.  doi: 10.1007/s002050100157.  Google Scholar

[1]

Darko Mitrovic. Existence and stability of a multidimensional scalar conservation law with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (1) : 163-188. doi: 10.3934/nhm.2010.5.163

[2]

Julien Jimenez. Scalar conservation law with discontinuous flux in a bounded domain. Conference Publications, 2007, 2007 (Special) : 520-530. doi: 10.3934/proc.2007.2007.520

[3]

. Adimurthi, Siddhartha Mishra, G.D. Veerappa Gowda. Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes. Networks & Heterogeneous Media, 2007, 2 (1) : 127-157. doi: 10.3934/nhm.2007.2.127

[4]

Raimund Bürger, Stefan Diehl, María Carmen Martí. A conservation law with multiply discontinuous flux modelling a flotation column. Networks & Heterogeneous Media, 2018, 13 (2) : 339-371. doi: 10.3934/nhm.2018015

[5]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

[6]

Giuseppe Maria Coclite, Lorenzo Di Ruvo. A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1247-1282. doi: 10.3934/dcds.2017052

[7]

Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solutions of the Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2981-2990. doi: 10.3934/dcds.2016.36.2981

[8]

Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73

[9]

Hiroshi Watanabe. Existence and uniqueness of entropy solutions to strongly degenerate parabolic equations with discontinuous coefficients. Conference Publications, 2013, 2013 (special) : 781-790. doi: 10.3934/proc.2013.2013.781

[10]

Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro. On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (3) : 617-633. doi: 10.3934/nhm.2010.5.617

[11]

Raimund Bürger, Kenneth H. Karlsen, John D. Towers. On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (3) : 461-485. doi: 10.3934/nhm.2010.5.461

[12]

Adimurthi , Shyam Sundar Ghoshal, G. D. Veerappa Gowda. Exact controllability of scalar conservation laws with strict convex flux. Mathematical Control & Related Fields, 2014, 4 (4) : 401-449. doi: 10.3934/mcrf.2014.4.401

[13]

Maria Laura Delle Monache, Paola Goatin. Stability estimates for scalar conservation laws with moving flux constraints. Networks & Heterogeneous Media, 2017, 12 (2) : 245-258. doi: 10.3934/nhm.2017010

[14]

Giuseppe Maria Coclite, Lorenzo di Ruvo, Jan Ernest, Siddhartha Mishra. Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Networks & Heterogeneous Media, 2013, 8 (4) : 969-984. doi: 10.3934/nhm.2013.8.969

[15]

Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : 349-367. doi: 10.3934/nhm.2016.11.349

[16]

Vicent Caselles. An existence and uniqueness result for flux limited diffusion equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1151-1195. doi: 10.3934/dcds.2011.31.1151

[17]

Marco Di Francesco, Graziano Stivaletta. Convergence of the follow-the-leader scheme for scalar conservation laws with space dependent flux. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 233-266. doi: 10.3934/dcds.2020010

[18]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020041

[19]

Afaf Bouharguane. On the instability of a nonlocal conservation law. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 419-426. doi: 10.3934/dcdss.2012.5.419

[20]

Luís Balsa Bicho, António Ornelas. Existence of minimizers for nonautonomous highly discontinuous scalar multiple integrals with pointwise constrained gradients. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 439-451. doi: 10.3934/dcds.2011.29.439

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]