\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Mathematical retroreflectors

Abstract / Introduction Related Papers Cited by
  • Retroreflectors are optical devices that reverse the direction of incident beams of light. Here we present a collection of billiard type retroreflectors consisting of four objects; three of them are asymptotically perfect retroreflectors, and the fourth one is a retroreflector which is very close to perfect. Three objects of the collection have recently been discovered and published or submitted for publication. The fourth object --- notched angle --- is a new one; a proof of its retroreflectivity is given.
    Mathematics Subject Classification: Primary: 37D50, 49Q10; Secondary: 70G60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Bachurin, K. Khanin, J. Marklof and A. Plakhov, Perfect retroreflectors and billiard dynamics, J. Modern Dynam., 5 (2011), 33-48.doi: 10.3934/jmd.2011.5.33.

    [2]

    K. I. Borg, L. H. Söderholm and H. Essén, Force on a spinning sphere moving in a rarefied gas, Physics of Fluids, 15 (2003), 736-741.doi: 10.1063/1.1541026.

    [3]

    L. Bunimovich, Mushrooms and other billiards with divided phase space, Chaos, 11 (2001), 802-808.doi: 10.1063/1.1418763.

    [4]

    J. E. Eaton, On spherically symmetric lenses, Trans. IRE Antennas Propag., 4 (1952), 66-71.

    [5]

    P. D. F. Gouveia, "Computação de Simetrias Variacionais e Optimização da Resistência Aerodinâmica Newtoniana," (Portuguese) [Computation of Variational Symmetries and Optimization of Newtonian Aerodynamic Resistance], Ph.D thesis, University of Aveiro, Portugal, 2007.

    [6]

    P. Gouveia, A. Plakhov and D. Torres, Two-dimensional body of maximum mean resistance, Applied Math. and Computation, 215 (2009), 37-52.doi: 10.1016/j.amc.2009.04.030.

    [7]

    S. G. Ivanov and A. M. Yanshin, Forces and moments acting on bodies rotating around a symmetry axis in a free molecular flow, Fluid Dyn., 15 (1980), 449-453.doi: 10.1007/BF01089985.

    [8]

    K. Moe and M. M. Moe, Gas-surface interactions and satellite drag coefficients, Planet. Space Sci., 53 (2005), 793-801.doi: 10.1016/j.pss.2005.03.005.

    [9]

    I. Newton, "Philosophiae Naturalis Principia Mathematica," London: Streater, 1687.

    [10]

    A. Plakhov, Billiards in unbounded domains reversing the direction of motion of a particle, Russ. Math. Surv., 61 (2006), 179-180.doi: 10.1070/RM2006v061n01ABEH004308.

    [11]

    A. Plakhov, Billiards and two-dimensional problems of optimal resistance, Arch. Ration. Mech. Anal., 194 (2009), 349-382.doi: 10.1007/s00205-008-0137-1.

    [12]

    A. Plakhov and P. Gouveia, Problems of maximal mean resistance on the plane, Nonlinearity, 20 (2007), 2271-2287.doi: 10.1088/0951-7715/20/9/013.

    [13]

    A. Plakhov, Scattering in billiards and problems of Newtonian aerodynamics, Russ. Math. Surv., 64 (2009), 873-938.doi: 10.1070/RM2009v064n05ABEH004642.

    [14]

    S. Tabachnikov, "Billiards," Paris: Société Mathématique de France, 1995.

    [15]

    C.-T. Wang, Free molecular flow over a rotating sphere, AIAA J., 10 (1972), 713-714.doi: 10.2514/3.50192.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(97) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return