November  2011, 30(4): 1211-1235. doi: 10.3934/dcds.2011.30.1211

Mathematical retroreflectors

1. 

Department of Mathematics, University of Aveiro, Aveiro 3810-193

Received  May 2010 Revised  August 2010 Published  May 2011

Retroreflectors are optical devices that reverse the direction of incident beams of light. Here we present a collection of billiard type retroreflectors consisting of four objects; three of them are asymptotically perfect retroreflectors, and the fourth one is a retroreflector which is very close to perfect. Three objects of the collection have recently been discovered and published or submitted for publication. The fourth object --- notched angle --- is a new one; a proof of its retroreflectivity is given.
Citation: Alexander Plakhov. Mathematical retroreflectors. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1211-1235. doi: 10.3934/dcds.2011.30.1211
References:
[1]

P. Bachurin, K. Khanin, J. Marklof and A. Plakhov, Perfect retroreflectors and billiard dynamics,, J. Modern Dynam., 5 (2011), 33.  doi: 10.3934/jmd.2011.5.33.  Google Scholar

[2]

K. I. Borg, L. H. Söderholm and H. Essén, Force on a spinning sphere moving in a rarefied gas,, Physics of Fluids, 15 (2003), 736.  doi: 10.1063/1.1541026.  Google Scholar

[3]

L. Bunimovich, Mushrooms and other billiards with divided phase space,, Chaos, 11 (2001), 802.  doi: 10.1063/1.1418763.  Google Scholar

[4]

J. E. Eaton, On spherically symmetric lenses,, Trans. IRE Antennas Propag., 4 (1952), 66.   Google Scholar

[5]

P. D. F. Gouveia, "Computação de Simetrias Variacionais e Optimização da Resistência Aerodinâmica Newtoniana,", Ph.D Thesis, (2007).   Google Scholar

[6]

P. Gouveia, A. Plakhov and D. Torres, Two-dimensional body of maximum mean resistance,, Applied Math. and Computation, 215 (2009), 37.  doi: 10.1016/j.amc.2009.04.030.  Google Scholar

[7]

S. G. Ivanov and A. M. Yanshin, Forces and moments acting on bodies rotating around a symmetry axis in a free molecular flow,, Fluid Dyn., 15 (1980), 449.  doi: 10.1007/BF01089985.  Google Scholar

[8]

K. Moe and M. M. Moe, Gas-surface interactions and satellite drag coefficients,, Planet. Space Sci., 53 (2005), 793.  doi: 10.1016/j.pss.2005.03.005.  Google Scholar

[9]

I. Newton, "Philosophiae Naturalis Principia Mathematica,", "Philosophiae Naturalis Principia Mathematica,", (1687).   Google Scholar

[10]

A. Plakhov, Billiards in unbounded domains reversing the direction of motion of a particle,, Russ. Math. Surv., 61 (2006), 179.  doi: 10.1070/RM2006v061n01ABEH004308.  Google Scholar

[11]

A. Plakhov, Billiards and two-dimensional problems of optimal resistance,, Arch. Ration. Mech. Anal., 194 (2009), 349.  doi: 10.1007/s00205-008-0137-1.  Google Scholar

[12]

A. Plakhov and P. Gouveia, Problems of maximal mean resistance on the plane,, Nonlinearity, 20 (2007), 2271.  doi: 10.1088/0951-7715/20/9/013.  Google Scholar

[13]

A. Plakhov, Scattering in billiards and problems of Newtonian aerodynamics,, Russ. Math. Surv., 64 (2009), 873.  doi: 10.1070/RM2009v064n05ABEH004642.  Google Scholar

[14]

S. Tabachnikov, "Billiards,", Paris: Société Mathématique de France, (1995).   Google Scholar

[15]

C.-T. Wang, Free molecular flow over a rotating sphere,, AIAA J., 10 (1972), 713.  doi: 10.2514/3.50192.  Google Scholar

show all references

References:
[1]

P. Bachurin, K. Khanin, J. Marklof and A. Plakhov, Perfect retroreflectors and billiard dynamics,, J. Modern Dynam., 5 (2011), 33.  doi: 10.3934/jmd.2011.5.33.  Google Scholar

[2]

K. I. Borg, L. H. Söderholm and H. Essén, Force on a spinning sphere moving in a rarefied gas,, Physics of Fluids, 15 (2003), 736.  doi: 10.1063/1.1541026.  Google Scholar

[3]

L. Bunimovich, Mushrooms and other billiards with divided phase space,, Chaos, 11 (2001), 802.  doi: 10.1063/1.1418763.  Google Scholar

[4]

J. E. Eaton, On spherically symmetric lenses,, Trans. IRE Antennas Propag., 4 (1952), 66.   Google Scholar

[5]

P. D. F. Gouveia, "Computação de Simetrias Variacionais e Optimização da Resistência Aerodinâmica Newtoniana,", Ph.D Thesis, (2007).   Google Scholar

[6]

P. Gouveia, A. Plakhov and D. Torres, Two-dimensional body of maximum mean resistance,, Applied Math. and Computation, 215 (2009), 37.  doi: 10.1016/j.amc.2009.04.030.  Google Scholar

[7]

S. G. Ivanov and A. M. Yanshin, Forces and moments acting on bodies rotating around a symmetry axis in a free molecular flow,, Fluid Dyn., 15 (1980), 449.  doi: 10.1007/BF01089985.  Google Scholar

[8]

K. Moe and M. M. Moe, Gas-surface interactions and satellite drag coefficients,, Planet. Space Sci., 53 (2005), 793.  doi: 10.1016/j.pss.2005.03.005.  Google Scholar

[9]

I. Newton, "Philosophiae Naturalis Principia Mathematica,", "Philosophiae Naturalis Principia Mathematica,", (1687).   Google Scholar

[10]

A. Plakhov, Billiards in unbounded domains reversing the direction of motion of a particle,, Russ. Math. Surv., 61 (2006), 179.  doi: 10.1070/RM2006v061n01ABEH004308.  Google Scholar

[11]

A. Plakhov, Billiards and two-dimensional problems of optimal resistance,, Arch. Ration. Mech. Anal., 194 (2009), 349.  doi: 10.1007/s00205-008-0137-1.  Google Scholar

[12]

A. Plakhov and P. Gouveia, Problems of maximal mean resistance on the plane,, Nonlinearity, 20 (2007), 2271.  doi: 10.1088/0951-7715/20/9/013.  Google Scholar

[13]

A. Plakhov, Scattering in billiards and problems of Newtonian aerodynamics,, Russ. Math. Surv., 64 (2009), 873.  doi: 10.1070/RM2009v064n05ABEH004642.  Google Scholar

[14]

S. Tabachnikov, "Billiards,", Paris: Société Mathématique de France, (1995).   Google Scholar

[15]

C.-T. Wang, Free molecular flow over a rotating sphere,, AIAA J., 10 (1972), 713.  doi: 10.2514/3.50192.  Google Scholar

[1]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[2]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[3]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[4]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[5]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[6]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[7]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[8]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[9]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[10]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[11]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[12]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[13]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[14]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[15]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[16]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[17]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[18]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[19]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[20]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]