-
Previous Article
A criterion for topological entropy to decrease under normalised Ricci flow
- DCDS Home
- This Issue
-
Next Article
Mathematical retroreflectors
Zero entropy versus infinite entropy
1. | School of Mathematical Science, Peking University, Beijing 100871, China, China |
References:
[1] |
T. Ohno, A weak equivalence and topological entropy, Publ. RIMS, Kyoto Univ., 16 (1980), 289-298.
doi: 10.2977/prims/1195187508. |
[2] |
W. Sun and E. Vargas, Entropy of flows, revisited, Bol. Soc. Bra. Mat., 30 (1999), 313-333.
doi: 10.1007/BF01239009. |
[3] |
W. Sun, T. Young and Y. Zhou, Topological entropies of equivalent smooth flows, Trans. Amer. Math. Soc., 361 (2009), 3071-3082.
doi: 10.1090/S0002-9947-08-04743-0. |
[4] |
R. Thomas, Topological entropy of fixed-point free flows, Trans. Amer. Math. Soc., 319 (1985), 601-618.
doi: 10.2307/2001256. |
[5] |
P. Walters, "An Introduction to Ergodic Theory," Springer-Verlag, 1982. |
show all references
References:
[1] |
T. Ohno, A weak equivalence and topological entropy, Publ. RIMS, Kyoto Univ., 16 (1980), 289-298.
doi: 10.2977/prims/1195187508. |
[2] |
W. Sun and E. Vargas, Entropy of flows, revisited, Bol. Soc. Bra. Mat., 30 (1999), 313-333.
doi: 10.1007/BF01239009. |
[3] |
W. Sun, T. Young and Y. Zhou, Topological entropies of equivalent smooth flows, Trans. Amer. Math. Soc., 361 (2009), 3071-3082.
doi: 10.1090/S0002-9947-08-04743-0. |
[4] |
R. Thomas, Topological entropy of fixed-point free flows, Trans. Amer. Math. Soc., 319 (1985), 601-618.
doi: 10.2307/2001256. |
[5] |
P. Walters, "An Introduction to Ergodic Theory," Springer-Verlag, 1982. |
[1] |
Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147 |
[2] |
John Banks, Brett Stanley. A note on equivalent definitions of topological transitivity. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1293-1296. doi: 10.3934/dcds.2013.33.1293 |
[3] |
Dou Dou, Meng Fan, Hua Qiu. Topological entropy on subsets for fixed-point free flows. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6319-6331. doi: 10.3934/dcds.2017273 |
[4] |
Marcelo R. R. Alves. Positive topological entropy for Reeb flows on 3-dimensional Anosov contact manifolds. Journal of Modern Dynamics, 2016, 10: 497-509. doi: 10.3934/jmd.2016.10.497 |
[5] |
Katrin Gelfert. Lower bounds for the topological entropy. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555 |
[6] |
Jaume Llibre. Brief survey on the topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363 |
[7] |
Tomoo Yokoyama. Refinements of topological invariants of flows. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2295-2331. doi: 10.3934/dcds.2021191 |
[8] |
Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 545-557 . doi: 10.3934/dcds.2011.31.545 |
[9] |
Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547 |
[10] |
Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201 |
[11] |
Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827 |
[12] |
Lluís Alsedà, David Juher, Francesc Mañosas. Forward triplets and topological entropy on trees. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 623-641. doi: 10.3934/dcds.2021131 |
[13] |
Xiaomin Zhou. Relative entropy dimension of topological dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6631-6642. doi: 10.3934/dcds.2019288 |
[14] |
Yun Zhao, Wen-Chiao Cheng, Chih-Chang Ho. Q-entropy for general topological dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2059-2075. doi: 10.3934/dcds.2019086 |
[15] |
Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75 |
[16] |
Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461 |
[17] |
Yujun Ju, Dongkui Ma, Yupan Wang. Topological entropy of free semigroup actions for noncompact sets. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 995-1017. doi: 10.3934/dcds.2019041 |
[18] |
César J. Niche. Topological entropy of a magnetic flow and the growth of the number of trajectories. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 577-580. doi: 10.3934/dcds.2004.11.577 |
[19] |
Tao Wang, Yu Huang. Weighted topological and measure-theoretic entropy. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3941-3967. doi: 10.3934/dcds.2019159 |
[20] |
Enoch Humberto Apaza Calla, Bulmer Mejia Garcia, Carlos Arnoldo Morales Rojas. Topological properties of sectional-Anosov flows. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4735-4741. doi: 10.3934/dcds.2015.35.4735 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]