November  2011, 30(4): 1237-1242. doi: 10.3934/dcds.2011.30.1237

Zero entropy versus infinite entropy

1. 

School of Mathematical Science, Peking University, Beijing 100871, China, China

Received  June 2010 Revised  December 2010 Published  May 2011

We construct a pair of equivalent flows with fixed points, such that one has infinite topological entropy and the other has zero topological entropy.
Citation: Wenxiang Sun, Cheng Zhang. Zero entropy versus infinite entropy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1237-1242. doi: 10.3934/dcds.2011.30.1237
References:
[1]

T. Ohno, A weak equivalence and topological entropy,, Publ. RIMS, 16 (1980), 289. doi: 10.2977/prims/1195187508. Google Scholar

[2]

W. Sun and E. Vargas, Entropy of flows, revisited,, Bol. Soc. Bra. Mat., 30 (1999), 313. doi: 10.1007/BF01239009. Google Scholar

[3]

W. Sun, T. Young and Y. Zhou, Topological entropies of equivalent smooth flows,, Trans. Amer. Math. Soc., 361 (2009), 3071. doi: 10.1090/S0002-9947-08-04743-0. Google Scholar

[4]

R. Thomas, Topological entropy of fixed-point free flows,, Trans. Amer. Math. Soc., 319 (1985), 601. doi: 10.2307/2001256. Google Scholar

[5]

P. Walters, "An Introduction to Ergodic Theory,", "An Introduction to Ergodic Theory,", (1982). Google Scholar

show all references

References:
[1]

T. Ohno, A weak equivalence and topological entropy,, Publ. RIMS, 16 (1980), 289. doi: 10.2977/prims/1195187508. Google Scholar

[2]

W. Sun and E. Vargas, Entropy of flows, revisited,, Bol. Soc. Bra. Mat., 30 (1999), 313. doi: 10.1007/BF01239009. Google Scholar

[3]

W. Sun, T. Young and Y. Zhou, Topological entropies of equivalent smooth flows,, Trans. Amer. Math. Soc., 361 (2009), 3071. doi: 10.1090/S0002-9947-08-04743-0. Google Scholar

[4]

R. Thomas, Topological entropy of fixed-point free flows,, Trans. Amer. Math. Soc., 319 (1985), 601. doi: 10.2307/2001256. Google Scholar

[5]

P. Walters, "An Introduction to Ergodic Theory,", "An Introduction to Ergodic Theory,", (1982). Google Scholar

[1]

Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147

[2]

John Banks, Brett Stanley. A note on equivalent definitions of topological transitivity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1293-1296. doi: 10.3934/dcds.2013.33.1293

[3]

Dou Dou, Meng Fan, Hua Qiu. Topological entropy on subsets for fixed-point free flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6319-6331. doi: 10.3934/dcds.2017273

[4]

Marcelo R. R. Alves. Positive topological entropy for Reeb flows on 3-dimensional Anosov contact manifolds. Journal of Modern Dynamics, 2016, 10: 497-509. doi: 10.3934/jmd.2016.10.497

[5]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

[6]

Jaume Llibre. Brief survey on the topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363

[7]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 545-556. doi: 10.3934/dcds.2011.31.545

[8]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[9]

Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201

[10]

Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827

[11]

Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75

[12]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[13]

César J. Niche. Topological entropy of a magnetic flow and the growth of the number of trajectories. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 577-580. doi: 10.3934/dcds.2004.11.577

[14]

Yujun Ju, Dongkui Ma, Yupan Wang. Topological entropy of free semigroup actions for noncompact sets. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 995-1017. doi: 10.3934/dcds.2019041

[15]

Yun Zhao, Wen-Chiao Cheng, Chih-Chang Ho. Q-entropy for general topological dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2059-2075. doi: 10.3934/dcds.2019086

[16]

Tao Wang, Yu Huang. Weighted topological and measure-theoretic entropy. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3941-3967. doi: 10.3934/dcds.2019159

[17]

Xiaomin Zhou. Relative entropy dimension of topological dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6631-6642. doi: 10.3934/dcds.2019288

[18]

Enoch Humberto Apaza Calla, Bulmer Mejia Garcia, Carlos Arnoldo Morales Rojas. Topological properties of sectional-Anosov flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4735-4741. doi: 10.3934/dcds.2015.35.4735

[19]

Yong Ji, Ercai Chen, Yunping Wang, Cao Zhao. Bowen entropy for fixed-point free flows. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6231-6239. doi: 10.3934/dcds.2019271

[20]

José S. Cánovas. Topological sequence entropy of $\omega$–limit sets of interval maps. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 781-786. doi: 10.3934/dcds.2001.7.781

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]