November  2011, 30(4): 1237-1242. doi: 10.3934/dcds.2011.30.1237

Zero entropy versus infinite entropy

1. 

School of Mathematical Science, Peking University, Beijing 100871, China, China

Received  June 2010 Revised  December 2010 Published  May 2011

We construct a pair of equivalent flows with fixed points, such that one has infinite topological entropy and the other has zero topological entropy.
Citation: Wenxiang Sun, Cheng Zhang. Zero entropy versus infinite entropy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1237-1242. doi: 10.3934/dcds.2011.30.1237
References:
[1]

T. Ohno, A weak equivalence and topological entropy,, Publ. RIMS, 16 (1980), 289.  doi: 10.2977/prims/1195187508.  Google Scholar

[2]

W. Sun and E. Vargas, Entropy of flows, revisited,, Bol. Soc. Bra. Mat., 30 (1999), 313.  doi: 10.1007/BF01239009.  Google Scholar

[3]

W. Sun, T. Young and Y. Zhou, Topological entropies of equivalent smooth flows,, Trans. Amer. Math. Soc., 361 (2009), 3071.  doi: 10.1090/S0002-9947-08-04743-0.  Google Scholar

[4]

R. Thomas, Topological entropy of fixed-point free flows,, Trans. Amer. Math. Soc., 319 (1985), 601.  doi: 10.2307/2001256.  Google Scholar

[5]

P. Walters, "An Introduction to Ergodic Theory,", "An Introduction to Ergodic Theory,", (1982).   Google Scholar

show all references

References:
[1]

T. Ohno, A weak equivalence and topological entropy,, Publ. RIMS, 16 (1980), 289.  doi: 10.2977/prims/1195187508.  Google Scholar

[2]

W. Sun and E. Vargas, Entropy of flows, revisited,, Bol. Soc. Bra. Mat., 30 (1999), 313.  doi: 10.1007/BF01239009.  Google Scholar

[3]

W. Sun, T. Young and Y. Zhou, Topological entropies of equivalent smooth flows,, Trans. Amer. Math. Soc., 361 (2009), 3071.  doi: 10.1090/S0002-9947-08-04743-0.  Google Scholar

[4]

R. Thomas, Topological entropy of fixed-point free flows,, Trans. Amer. Math. Soc., 319 (1985), 601.  doi: 10.2307/2001256.  Google Scholar

[5]

P. Walters, "An Introduction to Ergodic Theory,", "An Introduction to Ergodic Theory,", (1982).   Google Scholar

[1]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[2]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[3]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[4]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[5]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]