November  2011, 30(4): 1249-1262. doi: 10.3934/dcds.2011.30.1249

Multiple solutions for superlinear elliptic systems of Hamiltonian type

1. 

Department of Mathematics, Yunnan Normal University, Kunming 650092 Yunnan

2. 

Department of Mathematics, Zhaotong Teacher’s College, Zhaotong 657000 Yunnan

Received  March 2010 Revised  May 2010 Published  May 2011

This paper is concerned with the following periodic Hamiltonian elliptic system

$\-\Delta \varphi+V(x)\varphi=G_\psi(x,\varphi,\psi)$ in $\mathbb{R}^N,$
$\-\Delta \psi+V(x)\psi=G_\varphi(x,\varphi,\psi)$ in $\mathbb{R}^N,$
$\varphi(x)\to 0$ and $\psi(x)\to0$ as $|x|\to\infty.$

Assuming the potential $V$ is periodic and $0$ lies in a gap of $\sigma(-\Delta+V)$, $G(x,\eta)$ is periodic in $x$ and superquadratic in $\eta=(\varphi,\psi)$, existence and multiplicity of solutions are obtained via variational approach.
Citation: Rumei Zhang, Jin Chen, Fukun Zhao. Multiple solutions for superlinear elliptic systems of Hamiltonian type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1249-1262. doi: 10.3934/dcds.2011.30.1249
References:
[1]

N. Ackermann, On a periodic Schrödinger equation with nonlinear superlinear part,, Math. Z., 248 (2004), 423.  doi: 10.1007/s00209-004-0663-y.  Google Scholar

[2]

N. Ackermann, A superposition principle and multibump solutions of periodic Schrödinger equations,, J. Func. Anal., 234 (2006), 277.  doi: 10.1016/j.jfa.2005.11.010.  Google Scholar

[3]

C. O. Alves, P. C. Carrião and O. H. Miyagaki, On the existence of positive solutions of a perturbed Hamiltonian system in $\mathbbR$N,, J. Math. Anal. Appl., 276 (2002), 673.  doi: 10.1016/S0022-247X(02)00413-4.  Google Scholar

[4]

A. I. Ávila and J. Yang, Multiple solutions of nonlinear elliptic systems,, Nonlinear Differ. Equ. Appl., 12 (2005), 459.   Google Scholar

[5]

A. I. Ávila and J. Yang, On the existence and shape of least energy solutions for some elliptic systems,, J. Differential Equations, 191 (2003), 348.   Google Scholar

[6]

T. Bartsch and D. G. De Figueiredo, Infinitely many solutions of nonlinear elliptic systems,, in, 35 (1999), 51.   Google Scholar

[7]

T. Bartsch and Y. Ding, Deformation theorems on non-metrizable vector spaces and applications to critical point theory,, Math. Nach., 279 (2006), 1.  doi: 10.1002/mana.200410420.  Google Scholar

[8]

V. Benci and P. H. Rabinowitz, Critical point theorems for indefinite functionals,, Inven. Math., 52 (1979), 241.  doi: 10.1007/BF01389883.  Google Scholar

[9]

V. Coti-Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials,, J. Amer. Math. Soc., 4 (1991), 693.  doi: 10.1090/S0894-0347-1991-1119200-3.  Google Scholar

[10]

V. Coti-Zelati and P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $\mathbbR$N,, Comm. Pure Appl. Math., 45 (1992), 1217.  doi: 10.1002/cpa.3160451002.  Google Scholar

[11]

D. G. De Figueiredo and Y. H. Ding, Strongly indefinite functionals and multiple solutions of elliptic systems,, Tran. Amer. Math. Soc., 355 (2003), 2973.  doi: 10.1090/S0002-9947-03-03257-4.  Google Scholar

[12]

D. G. De Figueiredo and P. L. Felmer, On superquadratic elliptic systems,, Tran. Amer. Math. Soc., 343 (1994), 97.   Google Scholar

[13]

D. G. De Figueiredo, J. Marcos do Ó and B. Ruf, An Orlicz-space approach to superlinear elliptic systems,, J. Func. Anal., 224 (2005), 471.  doi: 10.1016/j.jfa.2004.09.008.  Google Scholar

[14]

D. G. De Figueiredo and J. Yang, Decay, symmetry and existence of solutions of semilinear elliptic systems,, Nonlinear Anal., 33 (1998), 211.  doi: 10.1016/S0362-546X(97)00548-8.  Google Scholar

[15]

Y. Ding, "Variational Methods for Strongly Indefinite Problems,", Interdisciplinary Mathematical Sciences, 7 (2007).  doi: 10.1142/9789812709639.  Google Scholar

[16]

Y. Ding and L. Jeanjean, Homoclinic orbits for a non periodic Hamiltonian system,, J. Differential Equations, 237 (2007), 473.  doi: 10.1016/j.jde.2007.03.005.  Google Scholar

[17]

Y. Ding and C. Lee, Existence and exponential decay of homoclinics in a nonperiodic superquadratic Hamiltonian system,, J. Differential Equations, 246 (2009), 2829.   Google Scholar

[18]

J. Hulshof and R. C. A. M. Van de Vorst, Differential systems with strongly variational structure,, J. Func. Anal., 114 (1993), 32.  doi: 10.1006/jfan.1993.1062.  Google Scholar

[19]

W. Kryszewski and A. Szulkin, An infinite dimensional Morse theory with applications,, Tran. Amer. Math. Soc., 349 (1997), 3181.  doi: 10.1090/S0002-9947-97-01963-6.  Google Scholar

[20]

W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to semilinear Schrödinger equations,, Adv. Differential Equations, 3 (1998), 441.   Google Scholar

[21]

G. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part,, Comm. Contemp. Math., 4 (2002), 763.  doi: 10.1142/S0219199702000853.  Google Scholar

[22]

G. Li and J. Yang, Asymptotically linear elliptic systems,, Comm. Partial Differential Equations, 29 (2004), 925.   Google Scholar

[23]

A. Pistoia and M. Ramos, Locating the peaks of the least energy solutions to an ellyptic system with Neumann boundary conditions,, J. Differential Equations, 201 (2004), 160.   Google Scholar

[24]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics, IV Analysis of Operators,", Academic Press, (1978).   Google Scholar

[25]

E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian stysems,, Math. Z., 209 (1992), 133.   Google Scholar

[26]

B. Sirakov, On the existence of solutions of Hamiltonian elliptic systems in $R$N,, Adv. Differential Equations, 5 (2000), 1445.   Google Scholar

[27]

C. Troestler and M. Willem, Nontrivial solution of a semilinear Schrödinger equation,, Comm. Partial Differential Equations, 21 (1996), 1431.   Google Scholar

[28]

J. Wang, J. Xu and F. Zhang, Existence of solutions for nonperiodic superquadratic Hamiltonian elliptic systems,, Nonlinear Anal., 72 (2010), 1949.  doi: 10.1016/j.na.2009.09.035.  Google Scholar

[29]

M. Willem, "Minimax Theorems,", Birkhäuser, (1996).   Google Scholar

[30]

J. Yang, Nontrivial solutions of semilinear elliptic systems in $\mathbbR$N,, Electron. J. Diff. Eqns., 6 (2001), 343.   Google Scholar

[31]

F. Zhao, L. Zhao and Y. Ding, Multiple solutions for asymptotically linear elliptic systems,, Nonlinear Differ. Equ. Appl., 15 (2008), 673.   Google Scholar

[32]

F. Zhao, L. Zhao and Y. Ding, Infinitely many solutions for asymptotically linear periodic Hamiltonian ellitpic systems,, ESAIM: Control, 16 (2010), 77.  doi: 10.1051/cocv:2008064.  Google Scholar

show all references

References:
[1]

N. Ackermann, On a periodic Schrödinger equation with nonlinear superlinear part,, Math. Z., 248 (2004), 423.  doi: 10.1007/s00209-004-0663-y.  Google Scholar

[2]

N. Ackermann, A superposition principle and multibump solutions of periodic Schrödinger equations,, J. Func. Anal., 234 (2006), 277.  doi: 10.1016/j.jfa.2005.11.010.  Google Scholar

[3]

C. O. Alves, P. C. Carrião and O. H. Miyagaki, On the existence of positive solutions of a perturbed Hamiltonian system in $\mathbbR$N,, J. Math. Anal. Appl., 276 (2002), 673.  doi: 10.1016/S0022-247X(02)00413-4.  Google Scholar

[4]

A. I. Ávila and J. Yang, Multiple solutions of nonlinear elliptic systems,, Nonlinear Differ. Equ. Appl., 12 (2005), 459.   Google Scholar

[5]

A. I. Ávila and J. Yang, On the existence and shape of least energy solutions for some elliptic systems,, J. Differential Equations, 191 (2003), 348.   Google Scholar

[6]

T. Bartsch and D. G. De Figueiredo, Infinitely many solutions of nonlinear elliptic systems,, in, 35 (1999), 51.   Google Scholar

[7]

T. Bartsch and Y. Ding, Deformation theorems on non-metrizable vector spaces and applications to critical point theory,, Math. Nach., 279 (2006), 1.  doi: 10.1002/mana.200410420.  Google Scholar

[8]

V. Benci and P. H. Rabinowitz, Critical point theorems for indefinite functionals,, Inven. Math., 52 (1979), 241.  doi: 10.1007/BF01389883.  Google Scholar

[9]

V. Coti-Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials,, J. Amer. Math. Soc., 4 (1991), 693.  doi: 10.1090/S0894-0347-1991-1119200-3.  Google Scholar

[10]

V. Coti-Zelati and P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $\mathbbR$N,, Comm. Pure Appl. Math., 45 (1992), 1217.  doi: 10.1002/cpa.3160451002.  Google Scholar

[11]

D. G. De Figueiredo and Y. H. Ding, Strongly indefinite functionals and multiple solutions of elliptic systems,, Tran. Amer. Math. Soc., 355 (2003), 2973.  doi: 10.1090/S0002-9947-03-03257-4.  Google Scholar

[12]

D. G. De Figueiredo and P. L. Felmer, On superquadratic elliptic systems,, Tran. Amer. Math. Soc., 343 (1994), 97.   Google Scholar

[13]

D. G. De Figueiredo, J. Marcos do Ó and B. Ruf, An Orlicz-space approach to superlinear elliptic systems,, J. Func. Anal., 224 (2005), 471.  doi: 10.1016/j.jfa.2004.09.008.  Google Scholar

[14]

D. G. De Figueiredo and J. Yang, Decay, symmetry and existence of solutions of semilinear elliptic systems,, Nonlinear Anal., 33 (1998), 211.  doi: 10.1016/S0362-546X(97)00548-8.  Google Scholar

[15]

Y. Ding, "Variational Methods for Strongly Indefinite Problems,", Interdisciplinary Mathematical Sciences, 7 (2007).  doi: 10.1142/9789812709639.  Google Scholar

[16]

Y. Ding and L. Jeanjean, Homoclinic orbits for a non periodic Hamiltonian system,, J. Differential Equations, 237 (2007), 473.  doi: 10.1016/j.jde.2007.03.005.  Google Scholar

[17]

Y. Ding and C. Lee, Existence and exponential decay of homoclinics in a nonperiodic superquadratic Hamiltonian system,, J. Differential Equations, 246 (2009), 2829.   Google Scholar

[18]

J. Hulshof and R. C. A. M. Van de Vorst, Differential systems with strongly variational structure,, J. Func. Anal., 114 (1993), 32.  doi: 10.1006/jfan.1993.1062.  Google Scholar

[19]

W. Kryszewski and A. Szulkin, An infinite dimensional Morse theory with applications,, Tran. Amer. Math. Soc., 349 (1997), 3181.  doi: 10.1090/S0002-9947-97-01963-6.  Google Scholar

[20]

W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to semilinear Schrödinger equations,, Adv. Differential Equations, 3 (1998), 441.   Google Scholar

[21]

G. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part,, Comm. Contemp. Math., 4 (2002), 763.  doi: 10.1142/S0219199702000853.  Google Scholar

[22]

G. Li and J. Yang, Asymptotically linear elliptic systems,, Comm. Partial Differential Equations, 29 (2004), 925.   Google Scholar

[23]

A. Pistoia and M. Ramos, Locating the peaks of the least energy solutions to an ellyptic system with Neumann boundary conditions,, J. Differential Equations, 201 (2004), 160.   Google Scholar

[24]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics, IV Analysis of Operators,", Academic Press, (1978).   Google Scholar

[25]

E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian stysems,, Math. Z., 209 (1992), 133.   Google Scholar

[26]

B. Sirakov, On the existence of solutions of Hamiltonian elliptic systems in $R$N,, Adv. Differential Equations, 5 (2000), 1445.   Google Scholar

[27]

C. Troestler and M. Willem, Nontrivial solution of a semilinear Schrödinger equation,, Comm. Partial Differential Equations, 21 (1996), 1431.   Google Scholar

[28]

J. Wang, J. Xu and F. Zhang, Existence of solutions for nonperiodic superquadratic Hamiltonian elliptic systems,, Nonlinear Anal., 72 (2010), 1949.  doi: 10.1016/j.na.2009.09.035.  Google Scholar

[29]

M. Willem, "Minimax Theorems,", Birkhäuser, (1996).   Google Scholar

[30]

J. Yang, Nontrivial solutions of semilinear elliptic systems in $\mathbbR$N,, Electron. J. Diff. Eqns., 6 (2001), 343.   Google Scholar

[31]

F. Zhao, L. Zhao and Y. Ding, Multiple solutions for asymptotically linear elliptic systems,, Nonlinear Differ. Equ. Appl., 15 (2008), 673.   Google Scholar

[32]

F. Zhao, L. Zhao and Y. Ding, Infinitely many solutions for asymptotically linear periodic Hamiltonian ellitpic systems,, ESAIM: Control, 16 (2010), 77.  doi: 10.1051/cocv:2008064.  Google Scholar

[1]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020036

[2]

Jiaquan Liu, Yuxia Guo, Pingan Zeng. Relationship of the morse index and the $L^\infty$ bound of solutions for a strongly indefinite differential superlinear system. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 107-119. doi: 10.3934/dcds.2006.16.107

[3]

Rushun Tian, Zhi-Qiang Wang. Bifurcation results on positive solutions of an indefinite nonlinear elliptic system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 335-344. doi: 10.3934/dcds.2013.33.335

[4]

Jian Zhang, Wen Zhang, Xiaoliang Xie. Existence and concentration of semiclassical solutions for Hamiltonian elliptic system. Communications on Pure & Applied Analysis, 2016, 15 (2) : 599-622. doi: 10.3934/cpaa.2016.15.599

[5]

Raffaella Servadei, Enrico Valdinoci. Variational methods for non-local operators of elliptic type. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2105-2137. doi: 10.3934/dcds.2013.33.2105

[6]

Wenxiong Chen, Congming Li. Indefinite elliptic problems in a domain. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 333-340. doi: 10.3934/dcds.1997.3.333

[7]

Jian Zhang, Wen Zhang, Xianhua Tang. Ground state solutions for Hamiltonian elliptic system with inverse square potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4565-4583. doi: 10.3934/dcds.2017195

[8]

Jian Zhang, Wen Zhang. Existence and decay property of ground state solutions for Hamiltonian elliptic system. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2433-2455. doi: 10.3934/cpaa.2019110

[9]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. Homogenization of variational functionals with nonstandard growth in perforated domains. Networks & Heterogeneous Media, 2010, 5 (2) : 189-215. doi: 10.3934/nhm.2010.5.189

[10]

Yurii Nesterov, Laura Scrimali. Solving strongly monotone variational and quasi-variational inequalities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1383-1396. doi: 10.3934/dcds.2011.31.1383

[11]

Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1929-1940. doi: 10.3934/cpaa.2015.14.1929

[12]

B. Buffoni, F. Giannoni. Brake periodic orbits of prescribed Hamiltonian for indefinite Lagrangian systems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 217-222. doi: 10.3934/dcds.1995.1.217

[13]

Andrea Tellini. Imperfect bifurcations via topological methods in superlinear indefinite problems. Conference Publications, 2015, 2015 (special) : 1050-1059. doi: 10.3934/proc.2015.1050

[14]

Alexander Mielke. Weak-convergence methods for Hamiltonian multiscale problems. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 53-79. doi: 10.3934/dcds.2008.20.53

[15]

Marian Gidea, Rafael De La Llave. Topological methods in the instability problem of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 295-328. doi: 10.3934/dcds.2006.14.295

[16]

Piotr Kokocki. Homotopy invariants methods in the global dynamics of strongly damped wave equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3227-3250. doi: 10.3934/dcds.2016.36.3227

[17]

Paula Balseiro, Teresinha J. Stuchi, Alejandro Cabrera, Jair Koiller. About simple variational splines from the Hamiltonian viewpoint. Journal of Geometric Mechanics, 2017, 9 (3) : 257-290. doi: 10.3934/jgm.2017011

[18]

Lori Badea. Multigrid methods for some quasi-variational inequalities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1457-1471. doi: 10.3934/dcdss.2013.6.1457

[19]

Zalman Balanov, Carlos García-Azpeitia, Wieslaw Krawcewicz. On variational and topological methods in nonlinear difference equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2813-2844. doi: 10.3934/cpaa.2018133

[20]

Chiu-Yen Kao, Yuan Lou, Eiji Yanagida. Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Mathematical Biosciences & Engineering, 2008, 5 (2) : 315-335. doi: 10.3934/mbe.2008.5.315

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]