• Previous Article
    Upper and lower estimates for invariance entropy
  • DCDS Home
  • This Issue
  • Next Article
    Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay
April  2011, 30(1): 137-167. doi: 10.3934/dcds.2011.30.137

Existence and uniqueness of traveling waves in a class of unidirectional lattice differential equations

1. 

Franklin W. Olin College of Engineering, 1000 Olin Way, Needham, MA 02492-1200, United States

2. 

Gettysburg College, Department of Mathematics, 300 North Washington St., Gettysburg, PA 17325-1400, United States

Received  October 2009 Revised  November 2010 Published  February 2011

We prove the existence and uniqueness, for wave speeds sufficiently large, of monotone traveling wave solutions connecting stable to unstable spatial equilibria for a class of $N$-dimensional lattice differential equations with unidirectional coupling. This class of lattice equations includes some cellular neural networks, monotone systems, and semi-discretizations for hyperbolic conservation laws with a source term. We obtain a variational characterization of the critical wave speed above which monotone traveling wave solutions are guaranteed to exist. We also discuss non-monotone waves, and the coexistence of monotone and non-monotone waves.
Citation: Aaron Hoffman, Benjamin Kennedy. Existence and uniqueness of traveling waves in a class of unidirectional lattice differential equations. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 137-167. doi: 10.3934/dcds.2011.30.137
References:
[1]

P. Bates, X. Chen and A. Chmaj, Traveling waves of bistable dynamics on a lattice,, SIAM J. Math. Anal., 35 (2003), 520.  doi: 10.1137/S0036141000374002.  Google Scholar

[2]

S. Benzoni-Gavage, Semi-discrete shock profiles for hyperbolic systems of conservation laws,, Phys. D, 115 (1998), 109.  doi: 10.1016/S0167-2789(97)00225-X.  Google Scholar

[3]

S. Bianchini, BV solutions of semidiscrete upwind scheme,, in, (2003), 135.   Google Scholar

[4]

J. W. Cahn, J. Mallet-Paret and E. Van Vleck, Traveling wave solutions for systems of ODEs on a two-dimensional spatial lattice,, SIAM J. Appl. Math, 59 (1999), 455.   Google Scholar

[5]

J. O. Chua and L. Yang, Cellular neural networks: Theory,, IEEE Trans. Circuits and Systems, 35 (1998), 1257.  doi: 10.1109/31.7600.  Google Scholar

[6]

J. O. Chua and L. Yang, Cellular neural networks: applications,, IEEE Trans. Circuits and Systems, 35 (1998), 1273.  doi: 10.1109/31.7601.  Google Scholar

[7]

J. L. Daleckii and M. G. Krein, "Stability of Solutions of Differential Equations in Banach Space,", Translated from the Russian by S.Smith, 43 ().   Google Scholar

[8]

O. Diekmann, S. A. van Gils, S. M. Verduyn-Lunel and H.-O. Walther, "Delay Equations: Functional- Complex- and Nonlinear Analysis,", volume \textbf{110} of Applied Mathematical Sciences, 110 (1995).   Google Scholar

[9]

U. Ebert, W. Van Saarloos and L. A. Peletier, Universal algebraic convergence in time of pulled fronts: the common mechanism for difference-differential and partial differential equations,, European J. Appl. Math, 13 (2002), 53.  doi: 10.1017/S0956792501004673.  Google Scholar

[10]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 335.   Google Scholar

[11]

J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional-Differential Equations,", volume \textbf{99} of Applied Mathematical Sciences, 99 (1993).   Google Scholar

[12]

D. Henry, Small solutions of linear autonomous functional differential equations,, J. Differential Equations, 8 (1970), 494.  doi: 10.1016/0022-0396(70)90021-5.  Google Scholar

[13]

A. Hoffman and J. Mallet-Paret, Universality of crystallographic pinning,, J. Dynam. Differential Equations, 22 (2010), 79.  doi: 10.1007/s10884-010-9157-2.  Google Scholar

[14]

S.-S. Hsu and C.-H. Lin, Existence and multiplicity of traveling waves in a lattice dynamical system,, J. Differential Equations, 164 (2000), 431.  doi: 10.1006/jdeq.2000.3770.  Google Scholar

[15]

S.-S. Hsu, C.-H. Lin and W. Shen, Traveling waves in cellular neural networks,, International Journal of Bifurcation and Chaos, 9 (1999), 1307.  doi: 10.1142/S0218127499000912.  Google Scholar

[16]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776.  doi: 10.1137/070703016.  Google Scholar

[17]

J. Keener, Propagation and its failure in coupled systems of discrete excitable cells,, SIAM J. Appl. Math., 47 (1987), 556.  doi: 10.1137/0147038.  Google Scholar

[18]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Etude de l'equation de la diffusion avec croissance de la quantite de matiere et som application a un probleme biologique,, Bull. Universite d'Etat a Moscou Ser. Int., 1 (1937), 1.   Google Scholar

[19]

T. Krisztin, Global dynamics of delay differential equations,, Period. Math. Hungar., 56 (2008), 83.  doi: 10.1007/s10998-008-5083-x.  Google Scholar

[20]

B. Li, M. A. Lewis and H. F. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions,, J. Math. Biol., 58 (2009), 323.  doi: 10.1007/s00285-008-0175-1.  Google Scholar

[21]

J. Mallet-Paret, Morse decompositions for delay-differential equations,, J. Differential Equations, 72 (1988), 270.  doi: 10.1016/0022-0396(88)90157-X.  Google Scholar

[22]

J. Mallet-Paret, The Fredholm alternative for functional-differential equations of mixed type,, J. Dynam. Differential Equations, 11 (1999), 1.  doi: 10.1023/A:1021889401235.  Google Scholar

[23]

J. Mallet-Paret, Traveling waves in spatially discrete dynamical systems of diffusive type,, in, 1822 (2003), 231.   Google Scholar

[24]

J. Mallet-Paret and G. Sell, The Poincare-Bendixson theorem for monotone cyclic feedback systems with delay,, J. Differential Equations, 125 (1996), 441.  doi: 10.1006/jdeq.1996.0037.  Google Scholar

[25]

C. Mascia, Qualitative behavior of conservation laws with reaction term and nonconvex flux,, Quart. Appl. Math., 58 (2000), 739.   Google Scholar

[26]

R. D. Nussbaum, Periodic solutions of some nonlinear autonomous functional differential equations,, Ann. Mat. Pura Appl., 4 (1974), 263.   Google Scholar

[27]

L. A. Peletier and J. A. Rodriguez, Fronts on a lattice,, Differential Integral Equations, 17 (2004), 1013.   Google Scholar

[28]

W. Rudin, "Principles of Mathematical Analysis,", McGraw-Hill, (1976).   Google Scholar

[29]

D. Serre, Discrete shock profiles: Existence and stability,, in, 1911 (2007), 79.   Google Scholar

[30]

W. van Saarloos, Front Propagation into unstable states,, Phys. Rep., 386 (2003), 29.  doi: 10.1016/j.physrep.2003.08.001.  Google Scholar

[31]

R. van Zon, H. van Beijeren and Ch. Dellago, Largest Lyapunov exponent for many particle systems at low densities,, Phys. Rev. Lett., 80 (1998), 2035.  doi: 10.1103/PhysRevLett.80.2035.  Google Scholar

[32]

H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353.  doi: 10.1137/0513028.  Google Scholar

show all references

References:
[1]

P. Bates, X. Chen and A. Chmaj, Traveling waves of bistable dynamics on a lattice,, SIAM J. Math. Anal., 35 (2003), 520.  doi: 10.1137/S0036141000374002.  Google Scholar

[2]

S. Benzoni-Gavage, Semi-discrete shock profiles for hyperbolic systems of conservation laws,, Phys. D, 115 (1998), 109.  doi: 10.1016/S0167-2789(97)00225-X.  Google Scholar

[3]

S. Bianchini, BV solutions of semidiscrete upwind scheme,, in, (2003), 135.   Google Scholar

[4]

J. W. Cahn, J. Mallet-Paret and E. Van Vleck, Traveling wave solutions for systems of ODEs on a two-dimensional spatial lattice,, SIAM J. Appl. Math, 59 (1999), 455.   Google Scholar

[5]

J. O. Chua and L. Yang, Cellular neural networks: Theory,, IEEE Trans. Circuits and Systems, 35 (1998), 1257.  doi: 10.1109/31.7600.  Google Scholar

[6]

J. O. Chua and L. Yang, Cellular neural networks: applications,, IEEE Trans. Circuits and Systems, 35 (1998), 1273.  doi: 10.1109/31.7601.  Google Scholar

[7]

J. L. Daleckii and M. G. Krein, "Stability of Solutions of Differential Equations in Banach Space,", Translated from the Russian by S.Smith, 43 ().   Google Scholar

[8]

O. Diekmann, S. A. van Gils, S. M. Verduyn-Lunel and H.-O. Walther, "Delay Equations: Functional- Complex- and Nonlinear Analysis,", volume \textbf{110} of Applied Mathematical Sciences, 110 (1995).   Google Scholar

[9]

U. Ebert, W. Van Saarloos and L. A. Peletier, Universal algebraic convergence in time of pulled fronts: the common mechanism for difference-differential and partial differential equations,, European J. Appl. Math, 13 (2002), 53.  doi: 10.1017/S0956792501004673.  Google Scholar

[10]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 335.   Google Scholar

[11]

J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional-Differential Equations,", volume \textbf{99} of Applied Mathematical Sciences, 99 (1993).   Google Scholar

[12]

D. Henry, Small solutions of linear autonomous functional differential equations,, J. Differential Equations, 8 (1970), 494.  doi: 10.1016/0022-0396(70)90021-5.  Google Scholar

[13]

A. Hoffman and J. Mallet-Paret, Universality of crystallographic pinning,, J. Dynam. Differential Equations, 22 (2010), 79.  doi: 10.1007/s10884-010-9157-2.  Google Scholar

[14]

S.-S. Hsu and C.-H. Lin, Existence and multiplicity of traveling waves in a lattice dynamical system,, J. Differential Equations, 164 (2000), 431.  doi: 10.1006/jdeq.2000.3770.  Google Scholar

[15]

S.-S. Hsu, C.-H. Lin and W. Shen, Traveling waves in cellular neural networks,, International Journal of Bifurcation and Chaos, 9 (1999), 1307.  doi: 10.1142/S0218127499000912.  Google Scholar

[16]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776.  doi: 10.1137/070703016.  Google Scholar

[17]

J. Keener, Propagation and its failure in coupled systems of discrete excitable cells,, SIAM J. Appl. Math., 47 (1987), 556.  doi: 10.1137/0147038.  Google Scholar

[18]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Etude de l'equation de la diffusion avec croissance de la quantite de matiere et som application a un probleme biologique,, Bull. Universite d'Etat a Moscou Ser. Int., 1 (1937), 1.   Google Scholar

[19]

T. Krisztin, Global dynamics of delay differential equations,, Period. Math. Hungar., 56 (2008), 83.  doi: 10.1007/s10998-008-5083-x.  Google Scholar

[20]

B. Li, M. A. Lewis and H. F. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions,, J. Math. Biol., 58 (2009), 323.  doi: 10.1007/s00285-008-0175-1.  Google Scholar

[21]

J. Mallet-Paret, Morse decompositions for delay-differential equations,, J. Differential Equations, 72 (1988), 270.  doi: 10.1016/0022-0396(88)90157-X.  Google Scholar

[22]

J. Mallet-Paret, The Fredholm alternative for functional-differential equations of mixed type,, J. Dynam. Differential Equations, 11 (1999), 1.  doi: 10.1023/A:1021889401235.  Google Scholar

[23]

J. Mallet-Paret, Traveling waves in spatially discrete dynamical systems of diffusive type,, in, 1822 (2003), 231.   Google Scholar

[24]

J. Mallet-Paret and G. Sell, The Poincare-Bendixson theorem for monotone cyclic feedback systems with delay,, J. Differential Equations, 125 (1996), 441.  doi: 10.1006/jdeq.1996.0037.  Google Scholar

[25]

C. Mascia, Qualitative behavior of conservation laws with reaction term and nonconvex flux,, Quart. Appl. Math., 58 (2000), 739.   Google Scholar

[26]

R. D. Nussbaum, Periodic solutions of some nonlinear autonomous functional differential equations,, Ann. Mat. Pura Appl., 4 (1974), 263.   Google Scholar

[27]

L. A. Peletier and J. A. Rodriguez, Fronts on a lattice,, Differential Integral Equations, 17 (2004), 1013.   Google Scholar

[28]

W. Rudin, "Principles of Mathematical Analysis,", McGraw-Hill, (1976).   Google Scholar

[29]

D. Serre, Discrete shock profiles: Existence and stability,, in, 1911 (2007), 79.   Google Scholar

[30]

W. van Saarloos, Front Propagation into unstable states,, Phys. Rep., 386 (2003), 29.  doi: 10.1016/j.physrep.2003.08.001.  Google Scholar

[31]

R. van Zon, H. van Beijeren and Ch. Dellago, Largest Lyapunov exponent for many particle systems at low densities,, Phys. Rev. Lett., 80 (1998), 2035.  doi: 10.1103/PhysRevLett.80.2035.  Google Scholar

[32]

H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353.  doi: 10.1137/0513028.  Google Scholar

[1]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[2]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[3]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[4]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[5]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[6]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[7]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[8]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[9]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[10]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[11]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[12]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[13]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[14]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[15]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[16]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[17]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[18]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[19]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[20]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]