\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Upper and lower estimates for invariance entropy

Abstract Related Papers Cited by
  • Invariance entropy for continuous-time control systems measures how often open-loop control functions have to be updated in order to render a subset of the state space invariant. In the present paper, we derive upper and lower bounds for the invariance entropy of control systems on smooth manifolds, using differential-geometric tools. As an example, we compute these bounds explicitly for projected bilinear control systems on the unit sphere. Moreover, we derive a formula for the invariance entropy of a control set for one-dimensional control-affine systems with a single control vector field.
    Mathematics Subject Classification: Primary: 34C40, 93C15, 94A17.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. A. Boichenko and G. A. Leonov, The direct Lyapunov method in estimates for topological entropy, J. Math. Sci., 91 (1998), 3370-3379 (English. Russian original); translation from Zap. Nauchn. Semin. POMI, 231 (1995), 62-75.

    [2]

    V. A. Boichenko, G. A. Leonov and V. Reitmann, "Dimension Theory for Ordinary Differential Equations," Teubner Texts in Mathematics, Wiesbaden, 2005.

    [3]

    F. Colonius and C. Kawan, Invariance entropy for control systems, SIAM J. Control Optim., 48 (2009), 1701-1721.doi: 10.1137/080713902.

    [4]

    F. Colonius and W. Kliemann, "The Dynamics of Control," Birkhäuser-Verlag, Boston, 2000.

    [5]

    S. Gallot, D. Hulin and J. Lafontaine, "Riemannian Geometry," Springer-Verlag, Berlin, 1987.

    [6]

    K. A. Grasse and H. J. Sussmann, Global controllability by nice controls, in "Nonlinear Controllability and Optimal Control" (H. J. Sussmann ed.), Monographs and Textbooks in Pure and Applied Mathematics 133, Marcel Dekker Inc., New York (1990), 33-79.

    [7]

    F. Ito, An estimate from above for the entropy and the topological entropy of a $C^1$-diffeomorphism, Proc. Japan Acad., 46 (1970), 226-230.doi: 10.3792/pja/1195520395.

    [8]

    C. Kawan, "Invariance Entropy for Control Systems," Ph.D thesis, Institut für Mathematik, Universität Augsburg, 2009, available at http://opus.bibliothek.uni-augsburg.de/volltexte/2010/1506/.

    [9]

    C. KawanInvariance entropy of control sets, to appear in SIAM J. Control Optim., preprint available at http://opus.bibliothek.uni-augsburg.de/volltexte/2010/1510/.

    [10]

    G. N. Nair, R. J. Evans, I. M. Y. Mareels and W. Moran, Topological feedback entropy and nonlinear stabilization, IEEE Trans. Automat. Control, 49 (2004), 1585-1597.doi: 10.1109/TAC.2004.834105.

    [11]

    A. Noack, "Dimension and Entropy Estimates and Stability Investigations for Nonlinear Systems on Manifolds (Dimensions- und Entropieabschätzungen sowie Stabilitätsuntersuchungen für nichtlineare Systeme auf Mannigfaltigkeiten)," Ph.D thesis (German), Universität Dresden, 1998.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(105) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return