Citation: |
[1] |
L. Arnold, "Random Dynamical Systems," Springer Verlag, Berlin, 1998. |
[2] |
A. Boyarsky and P. Góra, "Laws of Chaos," Brikhäuser, Boston, 1997. |
[3] |
J. Buzzi, Absolutely continuous S.R.B. measures for random Lasota-Yorke maps, Trans. Amer. Math. Soc., 352 (2000), 3289-3303.doi: 10.1090/S0002-9947-00-02607-6. |
[4] |
I. Evstigneev, T. Hens and K. R. Schenk-Hoppé, Market selection of financial trading strategies: Global stability, Math. Finance, 12 (2002), 329-339.doi: 10.1111/j.1467-9965.2002.tb00127.x. |
[5] |
P. Diaconis and D. Freedman, Iterated random functions, SIAM Rev., 41 (1999), 45-76.doi: 10.1137/S0036144598338446. |
[6] |
R. Drogin, An invariance principle for martingales, Ann. Math. Statist., 43 (1972), 602-620.doi: 10.1214/aoms/1177692640. |
[7] |
L. Dubins and D. Freedman, Invariant probabilities for certain Markov processes, Ann. Math. Statist., 37 (1966), 837-848.doi: 10.1214/aoms/1177699364. |
[8] |
P. Hall and C. Heyde, "Martingale Limit Theory and Its Application," Academic Press, New York-London, 1980. |
[9] |
J. L. Kelly, A new interpretation of information rate, Bell Sys. Tech. J., 35 (1956), 917-926. |
[10] |
Y. Kifer, "Ergodic Theory of Random Transformations," Birkhäuser, Boston, 1986. |
[11] |
P.-D. Liu, Dynamics of random transformations: smooth ergodic theory, Ergodic Theory Dynam. Syst., 21 (2001), 1279-1319.doi: 10.1017/S0143385701001614. |
[12] |
A. N. Shiryaev, "Probability," Springer-Verlag, New York, 1984. |
[13] |
Ö. Stenflo, Uniqueness of invariant measures for place-dependent random iterations of functions, in "Fractals in Multimedia" (eds. M. F. Barnsley, D. Saupe and E. R. Vrscay), Springer, (2002), 13-32. |
[14] |
L.-S. Young, What are SRB measures, and which dynamical systems have them?, J. Statist. Phys., 108 (2002), 733-754.doi: 10.1023/A:1019762724717. |