\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

SRB measures for certain Markov processes

Abstract Related Papers Cited by
  • We study Markov processes generated by iterated function systems (IFS). The constituent maps of the IFS are monotonic transformations of the interval. We first obtain an upper bound on the number of SRB (Sinai-Ruelle-Bowen) measures for the IFS. Then, when all the constituent maps have common fixed points at 0 and 1, theorems are given to analyze properties of the ergodic invariant measures $\delta_0$ and $\delta_1$. In particular, sufficient conditions for $\delta_0$ and/or $\delta_1$ to be, or not to be, SRB measures are given. We apply some of our results to asset market games.
    Mathematics Subject Classification: Primary 37A05, 37E05, 37H99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Arnold, "Random Dynamical Systems," Springer Verlag, Berlin, 1998.

    [2]

    A. Boyarsky and P. Góra, "Laws of Chaos," Brikhäuser, Boston, 1997.

    [3]

    J. Buzzi, Absolutely continuous S.R.B. measures for random Lasota-Yorke maps, Trans. Amer. Math. Soc., 352 (2000), 3289-3303.doi: 10.1090/S0002-9947-00-02607-6.

    [4]

    I. Evstigneev, T. Hens and K. R. Schenk-Hoppé, Market selection of financial trading strategies: Global stability, Math. Finance, 12 (2002), 329-339.doi: 10.1111/j.1467-9965.2002.tb00127.x.

    [5]

    P. Diaconis and D. Freedman, Iterated random functions, SIAM Rev., 41 (1999), 45-76.doi: 10.1137/S0036144598338446.

    [6]

    R. Drogin, An invariance principle for martingales, Ann. Math. Statist., 43 (1972), 602-620.doi: 10.1214/aoms/1177692640.

    [7]

    L. Dubins and D. Freedman, Invariant probabilities for certain Markov processes, Ann. Math. Statist., 37 (1966), 837-848.doi: 10.1214/aoms/1177699364.

    [8]

    P. Hall and C. Heyde, "Martingale Limit Theory and Its Application," Academic Press, New York-London, 1980.

    [9]

    J. L. Kelly, A new interpretation of information rate, Bell Sys. Tech. J., 35 (1956), 917-926.

    [10]

    Y. Kifer, "Ergodic Theory of Random Transformations," Birkhäuser, Boston, 1986.

    [11]

    P.-D. Liu, Dynamics of random transformations: smooth ergodic theory, Ergodic Theory Dynam. Syst., 21 (2001), 1279-1319.doi: 10.1017/S0143385701001614.

    [12]

    A. N. Shiryaev, "Probability," Springer-Verlag, New York, 1984.

    [13]

    Ö. Stenflo, Uniqueness of invariant measures for place-dependent random iterations of functions, in "Fractals in Multimedia" (eds. M. F. Barnsley, D. Saupe and E. R. Vrscay), Springer, (2002), 13-32.

    [14]

    L.-S. Young, What are SRB measures, and which dynamical systems have them?, J. Statist. Phys., 108 (2002), 733-754.doi: 10.1023/A:1019762724717.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(70) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return