• Previous Article
    Estimates for solutions of KDV on the phase space of periodic distributions in terms of action variables
  • DCDS Home
  • This Issue
  • Next Article
    A generalization of the moment problem to a complex measure space and an approximation technique using backward moments
April  2011, 30(1): 209-218. doi: 10.3934/dcds.2011.30.209

Dynamics of the $p$-adic shift and applications

1. 

400 E 71 St. Apt. 5B, New York, NY 10021, United States

2. 

Massachusetts Institute of Technology, Cambridge, MA 02139, United States, United States

3. 

Williams College, Williamstown, MA 01267, United States

Received  March 2010 Revised  July 2010 Published  February 2011

There is a natural continuous realization of the one-sided Bernoulli shift on the $p$-adic integers as the map that shifts the coefficients of the $p$-adic expansion to the left. We study this map's Mahler power series expansion. We prove strong results on $p$-adic valuations of the coefficients in this expansion, and show that certain natural maps (including many polynomials) are in a sense small perturbations of the shift. As a result, these polynomials share the shift map's important dynamical properties. This provides a novel approach to an earlier result of the authors.
Citation: James Kingsbery, Alex Levin, Anatoly Preygel, Cesar E. Silva. Dynamics of the $p$-adic shift and applications. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 209-218. doi: 10.3934/dcds.2011.30.209
References:
[1]

V. Anashin and A. Khrennikov, "Applied Algebraic Dynamics,", volume 49 of de Gruyter Expositions in Mathematics, 49 (2009).   Google Scholar

[2]

D. K. Arrowsmith and F. Vivaldi, Some $p$-adic representations of the Smale horseshoe,, Phys. Lett. A, 176 (1993), 292.  doi: 10.1016/0375-9601(93)90920-U.  Google Scholar

[3]

J. Bryk and C. E. Silva, Measurable dynamics of simple $p$-adic polynomials,, Amer. Math. Monthly, 112 (2005), 212.  doi: 10.2307/30037439.  Google Scholar

[4]

N. D. Elkies, Mahler's theorem on continuous $p$-adic maps via generating functions,, , ().   Google Scholar

[5]

F. Q. Gouvêa, "$p$-adic Numbers, An Introduction,", Universitext. Springer-Verlag, (1993).   Google Scholar

[6]

A. Yu. Khrennikov and M. Nilson, "$p$-adic Deterministic and Random Dynamics,", volume 574 of Mathematics and its Applications, 574 (2004).   Google Scholar

[7]

J. Kingsbery, A. Levin, A. Preygel, and C. E. Silva, On measure-preserving $C^1$ transformations of compact-open subsets of non-Archimedean local fields,, Trans. Amer. Math. Soc., 361 (2009), 61.  doi: 10.1090/S0002-9947-08-04686-2.  Google Scholar

[8]

A. V. Mikhaĭlov, The central limit theorem for a $p$-adic shift. I,, in, (1986), 60.   Google Scholar

[9]

A. M. Robert, "A Course in $p$-adic Analysis,", volume 198 of Graduate Texts in Mathematics, 198 (2000).   Google Scholar

[10]

C. E. Silva, "Invitation to Ergodic Theory,", volume 42 of Student Mathematical Library, 42 (2008).   Google Scholar

[11]

J. H. Silverman, "The Arithmetic of Dynamical Systems,", volume 241 of Graduate Texts in Mathematics, 241 (2007).   Google Scholar

[12]

D. Verstegen, $p$-adic dynamical systems,, in, 47 (1990), 235.   Google Scholar

[13]

C. F. Woodcock and N. P. Smart, $p$-adic chaos and random number generation,, Experiment. Math., 7 (1998), 333.   Google Scholar

show all references

References:
[1]

V. Anashin and A. Khrennikov, "Applied Algebraic Dynamics,", volume 49 of de Gruyter Expositions in Mathematics, 49 (2009).   Google Scholar

[2]

D. K. Arrowsmith and F. Vivaldi, Some $p$-adic representations of the Smale horseshoe,, Phys. Lett. A, 176 (1993), 292.  doi: 10.1016/0375-9601(93)90920-U.  Google Scholar

[3]

J. Bryk and C. E. Silva, Measurable dynamics of simple $p$-adic polynomials,, Amer. Math. Monthly, 112 (2005), 212.  doi: 10.2307/30037439.  Google Scholar

[4]

N. D. Elkies, Mahler's theorem on continuous $p$-adic maps via generating functions,, , ().   Google Scholar

[5]

F. Q. Gouvêa, "$p$-adic Numbers, An Introduction,", Universitext. Springer-Verlag, (1993).   Google Scholar

[6]

A. Yu. Khrennikov and M. Nilson, "$p$-adic Deterministic and Random Dynamics,", volume 574 of Mathematics and its Applications, 574 (2004).   Google Scholar

[7]

J. Kingsbery, A. Levin, A. Preygel, and C. E. Silva, On measure-preserving $C^1$ transformations of compact-open subsets of non-Archimedean local fields,, Trans. Amer. Math. Soc., 361 (2009), 61.  doi: 10.1090/S0002-9947-08-04686-2.  Google Scholar

[8]

A. V. Mikhaĭlov, The central limit theorem for a $p$-adic shift. I,, in, (1986), 60.   Google Scholar

[9]

A. M. Robert, "A Course in $p$-adic Analysis,", volume 198 of Graduate Texts in Mathematics, 198 (2000).   Google Scholar

[10]

C. E. Silva, "Invitation to Ergodic Theory,", volume 42 of Student Mathematical Library, 42 (2008).   Google Scholar

[11]

J. H. Silverman, "The Arithmetic of Dynamical Systems,", volume 241 of Graduate Texts in Mathematics, 241 (2007).   Google Scholar

[12]

D. Verstegen, $p$-adic dynamical systems,, in, 47 (1990), 235.   Google Scholar

[13]

C. F. Woodcock and N. P. Smart, $p$-adic chaos and random number generation,, Experiment. Math., 7 (1998), 333.   Google Scholar

[1]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[2]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[3]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[4]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[5]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[6]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[7]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[8]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (9)

[Back to Top]