April  2011, 30(1): 219-225. doi: 10.3934/dcds.2011.30.219

Estimates for solutions of KDV on the phase space of periodic distributions in terms of action variables

1. 

St. Petersburg State Univ., Russian Federation

Received  December 2009 Revised  June 2010 Published  February 2011

We consider the KdV equation on the Sobolev space of periodic distributions. We obtain estimates of the solution of the KdV in terms of action variables.
Citation: Evgeny L. Korotyaev. Estimates for solutions of KDV on the phase space of periodic distributions in terms of action variables. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 219-225. doi: 10.3934/dcds.2011.30.219
References:
[1]

J. Bourgain, Periodic Korteweg - de Vries equation with measures as initial data,, Selecta Math., 3 (1997), 115. doi: 10.1007/s000290050008.

[2]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on R and T,, J. Amer. Math. Soc., 16 (2003), 705. doi: 10.1090/S0894-0347-03-00421-1.

[3]

H. Flaschka and D. McLaughlin, Canonically conjugate variables for the Korteveg- de Vries equation and the Toda lattice with periodic boundary conditions,, Prog. of Theor. Phys., 55 (1976), 438. doi: 10.1143/PTP.55.438.

[4]

J. Garnett and E. Trubowitz, Gaps and bands of one dimensional periodic Schrödinger operators,, Comment. Math. Helv., 59 (1984), 258. doi: 10.1007/BF02566350.

[5]

A. Jenkins, "Univalent Functions and Conformal Mapping,", Berlin, (1958).

[6]

T. Kappeler and P. Topalov, Global wellposedness of KdV in $H^-1(\T,\R)$,, Duke Math. J., 135 (2006), 327. doi: 10.1215/S0012-7094-06-13524-X.

[7]

T.Kappeler and J. Pöschel, "Kdv & Kam,", Springer, (2003).

[8]

T. Kappeler, C. Möhr and P. Topalov, Birkhoff coordinates for KdV on phase spaces of distributions,, Selecta Math. (N.S.), 11 (2005), 37.

[9]

P. Kargaev and E. Korotyaev, The inverse problem for the Hill operator, a direct method,, Invent. Math., 129 (1997), 567. doi: 10.1007/s002220050173.

[10]

E. Korotyaev, Estimates for the Hill operator. I,, Journal Diff. Eq., 162 (2000), 1. doi: 10.1006/jdeq.1999.3684.

[11]

E. Korotyaev, Estimate for the Hill operator. II,, Journal Diff. Eq., 223 (2006), 229. doi: 10.1016/j.jde.2005.04.017.

[12]

E. Korotyaev, Characterization of the spectrum of Schrödinger operators with periodic distributions,, Int. Math. Res. Not., 2003 (2003), 2019. doi: 10.1155/S1073792803209107.

[13]

E. Korotyaev, The estimates of periodic potentials in terms of effective masses,, Commun. Math. Phys., 183 (1997), 383. doi: 10.1007/BF02506412.

[14]

E. Korotyaev, Periodic "weighted" operators,, J. Differential Equations, 189 (2003), 461. doi: 10.1016/S0022-0396(02)00154-7.

[15]

E. Korotyaev, Estimates of KdV Hamiltomian in terms of actions,, preprint, (2009).

[16]

S. Kuksin, "Analysis of Hamiltonian PDEs,", Oxford Lecture Series in Mathematics and its Applications, 19 (2000).

[17]

H. McKean and E. Trubowitz, Hill's surfaces and their theta functions,, Bull. Am. Math. Soc., 84 (1978), 1042. doi: 10.1090/S0002-9904-1978-14542-X.

[18]

V. Marchenko and I. Ostrovski, A characterization of the spectrum of the Hill operator,, Math. USSR Sb., 26 (1975), 493. doi: 10.1070/SM1975v026n04ABEH002493.

[19]

V. Marchenko and I. Ostrovski, Approximation of periodic by finite-zone potentials,, Selecta Math. Sovietica., 6 (1987), 101.

[20]

A. Veselov and S. Novikov, Poisson brackets and complex tori,, Proc. Steklov Inst. Math., 165 (1985), 53.

show all references

References:
[1]

J. Bourgain, Periodic Korteweg - de Vries equation with measures as initial data,, Selecta Math., 3 (1997), 115. doi: 10.1007/s000290050008.

[2]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on R and T,, J. Amer. Math. Soc., 16 (2003), 705. doi: 10.1090/S0894-0347-03-00421-1.

[3]

H. Flaschka and D. McLaughlin, Canonically conjugate variables for the Korteveg- de Vries equation and the Toda lattice with periodic boundary conditions,, Prog. of Theor. Phys., 55 (1976), 438. doi: 10.1143/PTP.55.438.

[4]

J. Garnett and E. Trubowitz, Gaps and bands of one dimensional periodic Schrödinger operators,, Comment. Math. Helv., 59 (1984), 258. doi: 10.1007/BF02566350.

[5]

A. Jenkins, "Univalent Functions and Conformal Mapping,", Berlin, (1958).

[6]

T. Kappeler and P. Topalov, Global wellposedness of KdV in $H^-1(\T,\R)$,, Duke Math. J., 135 (2006), 327. doi: 10.1215/S0012-7094-06-13524-X.

[7]

T.Kappeler and J. Pöschel, "Kdv & Kam,", Springer, (2003).

[8]

T. Kappeler, C. Möhr and P. Topalov, Birkhoff coordinates for KdV on phase spaces of distributions,, Selecta Math. (N.S.), 11 (2005), 37.

[9]

P. Kargaev and E. Korotyaev, The inverse problem for the Hill operator, a direct method,, Invent. Math., 129 (1997), 567. doi: 10.1007/s002220050173.

[10]

E. Korotyaev, Estimates for the Hill operator. I,, Journal Diff. Eq., 162 (2000), 1. doi: 10.1006/jdeq.1999.3684.

[11]

E. Korotyaev, Estimate for the Hill operator. II,, Journal Diff. Eq., 223 (2006), 229. doi: 10.1016/j.jde.2005.04.017.

[12]

E. Korotyaev, Characterization of the spectrum of Schrödinger operators with periodic distributions,, Int. Math. Res. Not., 2003 (2003), 2019. doi: 10.1155/S1073792803209107.

[13]

E. Korotyaev, The estimates of periodic potentials in terms of effective masses,, Commun. Math. Phys., 183 (1997), 383. doi: 10.1007/BF02506412.

[14]

E. Korotyaev, Periodic "weighted" operators,, J. Differential Equations, 189 (2003), 461. doi: 10.1016/S0022-0396(02)00154-7.

[15]

E. Korotyaev, Estimates of KdV Hamiltomian in terms of actions,, preprint, (2009).

[16]

S. Kuksin, "Analysis of Hamiltonian PDEs,", Oxford Lecture Series in Mathematics and its Applications, 19 (2000).

[17]

H. McKean and E. Trubowitz, Hill's surfaces and their theta functions,, Bull. Am. Math. Soc., 84 (1978), 1042. doi: 10.1090/S0002-9904-1978-14542-X.

[18]

V. Marchenko and I. Ostrovski, A characterization of the spectrum of the Hill operator,, Math. USSR Sb., 26 (1975), 493. doi: 10.1070/SM1975v026n04ABEH002493.

[19]

V. Marchenko and I. Ostrovski, Approximation of periodic by finite-zone potentials,, Selecta Math. Sovietica., 6 (1987), 101.

[20]

A. Veselov and S. Novikov, Poisson brackets and complex tori,, Proc. Steklov Inst. Math., 165 (1985), 53.

[1]

Paolo Perfetti. Fixed point theorems in the Arnol'd model about instability of the action-variables in phase-space. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 379-391. doi: 10.3934/dcds.1998.4.379

[2]

Alessandro Fonda, Antonio J. Ureña. Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 169-192. doi: 10.3934/dcds.2011.29.169

[3]

Jan-Cornelius Molnar. On two-sided estimates for the nonlinear Fourier transform of KdV. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3339-3356. doi: 10.3934/dcds.2016.36.3339

[4]

Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268

[5]

Brandon Seward. Every action of a nonamenable group is the factor of a small action. Journal of Modern Dynamics, 2014, 8 (2) : 251-270. doi: 10.3934/jmd.2014.8.251

[6]

Michael Hutchings. Mean action and the Calabi invariant. Journal of Modern Dynamics, 2016, 10: 511-539. doi: 10.3934/jmd.2016.10.511

[7]

Valentin Ovsienko, MichaeL Shapiro. Cluster algebras with Grassmann variables. Electronic Research Announcements, 2019, 26: 1-15. doi: 10.3934/era.2019.26.001

[8]

Helmut Kröger. From quantum action to quantum chaos. Conference Publications, 2003, 2003 (Special) : 492-500. doi: 10.3934/proc.2003.2003.492

[9]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75

[10]

S. A. Krat. On pairs of metrics invariant under a cocompact action of a group. Electronic Research Announcements, 2001, 7: 79-86.

[11]

Alexandre Rocha, Mário Jorge Dias Carneiro. A dynamical condition for differentiability of Mather's average action. Journal of Geometric Mechanics, 2014, 6 (4) : 549-566. doi: 10.3934/jgm.2014.6.549

[12]

Philippe G. LeFloch, Seiji Ukai. A symmetrization of the relativistic Euler equations with several spatial variables. Kinetic & Related Models, 2009, 2 (2) : 275-292. doi: 10.3934/krm.2009.2.275

[13]

Tatiana Odzijewicz. Generalized fractional isoperimetric problem of several variables. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2617-2629. doi: 10.3934/dcdsb.2014.19.2617

[14]

Sebastián Ferrer, Francisco J. Molero. Andoyer's variables and phases in the free rigid body. Journal of Geometric Mechanics, 2014, 6 (1) : 25-37. doi: 10.3934/jgm.2014.6.25

[15]

Raphael Stuhlmeier. KdV theory and the Chilean tsunami of 1960. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 623-632. doi: 10.3934/dcdsb.2009.12.623

[16]

Juan-Ming Yuan, Jiahong Wu. The complex KdV equation with or without dissipation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 489-512. doi: 10.3934/dcdsb.2005.5.489

[17]

Jean-Paul Chehab, Georges Sadaka. On damping rates of dissipative KdV equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1487-1506. doi: 10.3934/dcdss.2013.6.1487

[18]

Nate Bottman, Bernard Deconinck. KdV cnoidal waves are spectrally stable. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1163-1180. doi: 10.3934/dcds.2009.25.1163

[19]

Joan-Josep Climent, Francisco J. García, Verónica Requena. On the construction of bent functions of $n+2$ variables from bent functions of $n$ variables. Advances in Mathematics of Communications, 2008, 2 (4) : 421-431. doi: 10.3934/amc.2008.2.421

[20]

Rowan Killip, Soonsik Kwon, Shuanglin Shao, Monica Visan. On the mass-critical generalized KdV equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 191-221. doi: 10.3934/dcds.2012.32.191

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]