\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Estimates for solutions of KDV on the phase space of periodic distributions in terms of action variables

Abstract Related Papers Cited by
  • We consider the KdV equation on the Sobolev space of periodic distributions. We obtain estimates of the solution of the KdV in terms of action variables.
    Mathematics Subject Classification: Primary: 37K05; Secondary: 35Q53, 37K10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Bourgain, Periodic Korteweg - de Vries equation with measures as initial data, Selecta Math., 3 (1997), 115-159.doi: 10.1007/s000290050008.

    [2]

    J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on R and T, J. Amer. Math. Soc., 16 (2003), 705-749.doi: 10.1090/S0894-0347-03-00421-1.

    [3]

    H. Flaschka and D. McLaughlin, Canonically conjugate variables for the Korteveg- de Vries equation and the Toda lattice with periodic boundary conditions, Prog. of Theor. Phys., 55 (1976), 438-456.doi: 10.1143/PTP.55.438.

    [4]

    J. Garnett and E. Trubowitz, Gaps and bands of one dimensional periodic Schrödinger operators, Comment. Math. Helv., 59 (1984), 258-312doi: 10.1007/BF02566350.

    [5]

    A. Jenkins, "Univalent Functions and Conformal Mapping," Berlin, Göttingen, Heidelberg: Springer, 1958.

    [6]

    T. Kappeler and P. Topalov, Global wellposedness of KdV in $H^-1(\T,\R)$, Duke Math. J., 135 (2006), 327-360.doi: 10.1215/S0012-7094-06-13524-X.

    [7]

    T.Kappeler and J. Pöschel, "Kdv & Kam," Springer, 2003.

    [8]

    T. Kappeler, C. Möhr and P. Topalov, Birkhoff coordinates for KdV on phase spaces of distributions, Selecta Math. (N.S.), 11 (2005), 37-98.

    [9]

    P. Kargaev and E. Korotyaev, The inverse problem for the Hill operator, a direct method, Invent. Math., 129 (1997), 567-593.doi: 10.1007/s002220050173.

    [10]

    E. Korotyaev, Estimates for the Hill operator. I, Journal Diff. Eq., 162 (2000), 1-26.doi: 10.1006/jdeq.1999.3684.

    [11]

    E. Korotyaev, Estimate for the Hill operator. II, Journal Diff. Eq., 223 (2006), 229-260.doi: 10.1016/j.jde.2005.04.017.

    [12]

    E. Korotyaev, Characterization of the spectrum of Schrödinger operators with periodic distributions, Int. Math. Res. Not., 2003 (2003), 2019-2031.doi: 10.1155/S1073792803209107.

    [13]

    E. Korotyaev, The estimates of periodic potentials in terms of effective masses, Commun. Math. Phys., 183 (1997), 383-400.doi: 10.1007/BF02506412.

    [14]

    E. Korotyaev, Periodic "weighted" operators, J. Differential Equations, 189 (2003), 461-486.doi: 10.1016/S0022-0396(02)00154-7.

    [15]

    E. Korotyaev, Estimates of KdV Hamiltomian in terms of actions, preprint, 2009.

    [16]

    S. Kuksin, "Analysis of Hamiltonian PDEs," Oxford Lecture Series in Mathematics and its Applications, 19, Oxford University Press, Oxford, 2000.

    [17]

    H. McKean and E. Trubowitz, Hill's surfaces and their theta functions, Bull. Am. Math. Soc., 84 (1978), 1042-1085.doi: 10.1090/S0002-9904-1978-14542-X.

    [18]

    V. Marchenko and I. Ostrovski, A characterization of the spectrum of the Hill operator, Math. USSR Sb., 26 (1975), 493-554.doi: 10.1070/SM1975v026n04ABEH002493.

    [19]

    V. Marchenko and I. Ostrovski, Approximation of periodic by finite-zone potentials, Selecta Math. Sovietica., 6 (1987), 101-136.

    [20]

    A. Veselov and S. Novikov, Poisson brackets and complex tori, Proc. Steklov Inst. Math., 165 (1985), 53-65.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(66) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return