• Previous Article
    Estimates for solutions of KDV on the phase space of periodic distributions in terms of action variables
  • DCDS Home
  • This Issue
  • Next Article
    Positive topological entropy for multidimensional perturbations of topologically crossing homoclinicity
April  2011, 30(1): 227-241. doi: 10.3934/dcds.2011.30.227

Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity

1. 

Institute of Contemporary Mathematics, Henan University, School of Mathematics and Information Science, Henan University, Kaifeng 475004, China

2. 

School of Mathematics and Information Science, Henan University, Kaifeng 475004, China

Received  January 2010 Revised  May 2010 Published  February 2011

In this paper, we consider the relation between $p > 1$ and critical dimension of the extremal solution of the semilinear equation

$\beta \Delta^{2}u-\tau \Delta u=\frac{\lambda}{(1-u)^{p}} \mbox{in} B$,
$0 < u \leq 1 \mbox{in} B$,
$u=\Delta u=0 \mbox{on} \partial B$,

where $B$ is the unit ball in $R^{n}$, $\lambda>0$ is a parameter, $\tau>0, \beta>0,p>1$ are fixed constants. By Hardy-Rellich inequality, we find that when $p$ is large enough, the critical dimension is 13.

Citation: Baishun Lai, Qing Luo. Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 227-241. doi: 10.3934/dcds.2011.30.227
References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I,, Comm. Pure Appl. Math., 12 (1959), 623. doi: 10.1002/cpa.3160120405. Google Scholar

[2]

C. Cowan, P. Esposito, N. Ghoussoub and A. Moradifam, The critical dimension for a forth order elliptic problem with singular nonlineartiy,, Arch. Ration. Mech. Anal., 198 (2010), 763. doi: 10.1007/s00205-010-0367-x. Google Scholar

[3]

M. G. Crandall and P. H. Rabinawitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems,, Arch. Ration. Mech. Anal., 58 (1975), 207. doi: 10.1007/BF00280741. Google Scholar

[4]

P. Esposito, N. Ghoussoub and Y. Guo, Mathematical analysis of partial differential equations modeling electrostatic MEMS,, Research Monograph, (2007). Google Scholar

[5]

A. Ferrero and G. Warnault, On solutions of second and fourth order elliptic equations with power-type nonlinearities,, Nonlinear Anal., 70 (2009), 2889. doi: 10.1016/j.na.2008.12.041. Google Scholar

[6]

Z. M. Guo and J. C. Wei, Hausdorff dimension of ruptures for solutions of a semilinear elliptic equation with singular nonlinearity,, Manuscript Math., 120 (2006), 193. doi: 10.1007/s00229-006-0001-2. Google Scholar

[7]

Z. Gui and J. Wei, On a fourth order nonlinear elliptic equation with negative exponent,, SLAM J. Math. Anal., 40 (2009), 2034. doi: 10.1137/070703375. Google Scholar

[8]

H. Jian and F. Lin, Zero set of Sobolev functions with negative power of integrability,, Chin. Ann. Math B, 25 (2004), 65. doi: 10.1142/S0252959904000068. Google Scholar

[9]

F. Lin and Y. Yang, Nonlinear non-local elliptic equation modelling electrostatic actuation,, Proc. R. Soc. A, 463 (2007), 1323. doi: 10.1098/rspa.2007.1816. Google Scholar

[10]

A. M. Meadows, Stable and singular solutions of the equation $\Delta u=\frac{1}{u}$,, Indiana Univ Math. J., 53 (2004), 1681. doi: 10.1512/iumj.2004.53.2560. Google Scholar

[11]

A. Moradifam, On the critical dimension of a fourth order elliptic problem with negative exponent,, J. of Differential Equations, 248 (2010), 594. doi: 10.1016/j.jde.2009.09.011. Google Scholar

[12]

F. Rellich, Halbbeschränkte Differentialoperatoren höherer Ordnung,, in, 3 (1954), 243. Google Scholar

[13]

D. Ye and F. Zhou, On a general family of nonautonomous elliptic and parabolic equations,, Calc. Var. and PDE, 37 (2010), 259. doi: 10.1007/s00526-009-0262-1. Google Scholar

show all references

References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I,, Comm. Pure Appl. Math., 12 (1959), 623. doi: 10.1002/cpa.3160120405. Google Scholar

[2]

C. Cowan, P. Esposito, N. Ghoussoub and A. Moradifam, The critical dimension for a forth order elliptic problem with singular nonlineartiy,, Arch. Ration. Mech. Anal., 198 (2010), 763. doi: 10.1007/s00205-010-0367-x. Google Scholar

[3]

M. G. Crandall and P. H. Rabinawitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems,, Arch. Ration. Mech. Anal., 58 (1975), 207. doi: 10.1007/BF00280741. Google Scholar

[4]

P. Esposito, N. Ghoussoub and Y. Guo, Mathematical analysis of partial differential equations modeling electrostatic MEMS,, Research Monograph, (2007). Google Scholar

[5]

A. Ferrero and G. Warnault, On solutions of second and fourth order elliptic equations with power-type nonlinearities,, Nonlinear Anal., 70 (2009), 2889. doi: 10.1016/j.na.2008.12.041. Google Scholar

[6]

Z. M. Guo and J. C. Wei, Hausdorff dimension of ruptures for solutions of a semilinear elliptic equation with singular nonlinearity,, Manuscript Math., 120 (2006), 193. doi: 10.1007/s00229-006-0001-2. Google Scholar

[7]

Z. Gui and J. Wei, On a fourth order nonlinear elliptic equation with negative exponent,, SLAM J. Math. Anal., 40 (2009), 2034. doi: 10.1137/070703375. Google Scholar

[8]

H. Jian and F. Lin, Zero set of Sobolev functions with negative power of integrability,, Chin. Ann. Math B, 25 (2004), 65. doi: 10.1142/S0252959904000068. Google Scholar

[9]

F. Lin and Y. Yang, Nonlinear non-local elliptic equation modelling electrostatic actuation,, Proc. R. Soc. A, 463 (2007), 1323. doi: 10.1098/rspa.2007.1816. Google Scholar

[10]

A. M. Meadows, Stable and singular solutions of the equation $\Delta u=\frac{1}{u}$,, Indiana Univ Math. J., 53 (2004), 1681. doi: 10.1512/iumj.2004.53.2560. Google Scholar

[11]

A. Moradifam, On the critical dimension of a fourth order elliptic problem with negative exponent,, J. of Differential Equations, 248 (2010), 594. doi: 10.1016/j.jde.2009.09.011. Google Scholar

[12]

F. Rellich, Halbbeschränkte Differentialoperatoren höherer Ordnung,, in, 3 (1954), 243. Google Scholar

[13]

D. Ye and F. Zhou, On a general family of nonautonomous elliptic and parabolic equations,, Calc. Var. and PDE, 37 (2010), 259. doi: 10.1007/s00526-009-0262-1. Google Scholar

[1]

Craig Cowan, Pierpaolo Esposito, Nassif Ghoussoub. Regularity of extremal solutions in fourth order nonlinear eigenvalue problems on general domains. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1033-1050. doi: 10.3934/dcds.2010.28.1033

[2]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

[3]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[4]

Jaime Angulo Pava, Carlos Banquet, Márcia Scialom. Stability for the modified and fourth-order Benjamin-Bona-Mahony equations. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 851-871. doi: 10.3934/dcds.2011.30.851

[5]

Changbing Hu. Stability of under-compressive waves with second and fourth order diffusions. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 629-662. doi: 10.3934/dcds.2008.22.629

[6]

Feliz Minhós, João Fialho. Existence and multiplicity of solutions in fourth order BVPs with unbounded nonlinearities. Conference Publications, 2013, 2013 (special) : 555-564. doi: 10.3934/proc.2013.2013.555

[7]

To Fu Ma. Positive solutions for a nonlocal fourth order equation of Kirchhoff type. Conference Publications, 2007, 2007 (Special) : 694-703. doi: 10.3934/proc.2007.2007.694

[8]

Feliz Minhós. Periodic solutions for some fully nonlinear fourth order differential equations. Conference Publications, 2011, 2011 (Special) : 1068-1077. doi: 10.3934/proc.2011.2011.1068

[9]

Tokushi Sato, Tatsuya Watanabe. Singular positive solutions for a fourth order elliptic problem in $R$. Communications on Pure & Applied Analysis, 2011, 10 (1) : 245-268. doi: 10.3934/cpaa.2011.10.245

[10]

John R. Graef, Lingju Kong, Min Wang. Existence of multiple solutions to a discrete fourth order periodic boundary value problem. Conference Publications, 2013, 2013 (special) : 291-299. doi: 10.3934/proc.2013.2013.291

[11]

John B. Greer, Andrea L. Bertozzi. $H^1$ Solutions of a class of fourth order nonlinear equations for image processing. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 349-366. doi: 10.3934/dcds.2004.10.349

[12]

Chunhua Jin, Jingxue Yin, Zejia Wang. Positive periodic solutions to a nonlinear fourth-order differential equation. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1225-1235. doi: 10.3934/cpaa.2008.7.1225

[13]

Takahiro Hashimoto. Existence and nonexistence of nontrivial solutions of some nonlinear fourth order elliptic equations. Conference Publications, 2003, 2003 (Special) : 393-402. doi: 10.3934/proc.2003.2003.393

[14]

M. Ben Ayed, K. El Mehdi, M. Hammami. Nonexistence of bounded energy solutions for a fourth order equation on thin annuli. Communications on Pure & Applied Analysis, 2004, 3 (4) : 557-580. doi: 10.3934/cpaa.2004.3.557

[15]

John R. Graef, Johnny Henderson, Bo Yang. Positive solutions to a fourth order three point boundary value problem. Conference Publications, 2009, 2009 (Special) : 269-275. doi: 10.3934/proc.2009.2009.269

[16]

Craig Cowan. Uniqueness of solutions for elliptic systems and fourth order equations involving a parameter. Communications on Pure & Applied Analysis, 2016, 15 (2) : 519-533. doi: 10.3934/cpaa.2016.15.519

[17]

Benoît Pausader. The focusing energy-critical fourth-order Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1275-1292. doi: 10.3934/dcds.2009.24.1275

[18]

Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006

[19]

Qilin Xie, Jianshe Yu. Bounded state solutions of Kirchhoff type problems with a critical exponent in high dimension. Communications on Pure & Applied Analysis, 2019, 18 (1) : 129-158. doi: 10.3934/cpaa.2019008

[20]

Bernard Helffer, Thomas Hoffmann-Ostenhof, Susanna Terracini. Nodal minimal partitions in dimension $3$. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 617-635. doi: 10.3934/dcds.2010.28.617

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]