April  2011, 30(1): 243-252. doi: 10.3934/dcds.2011.30.243

Positive topological entropy for multidimensional perturbations of topologically crossing homoclinicity

1. 

Department of Applied Mathematics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan, Taiwan

Received  January 2010 Revised  October 2010 Published  February 2011

In this paper, we consider a one-parameter family $F_{\lambda }$ of continuous maps on $\mathbb{R}^{m}$ or $\mathbb{R}^{m}\times \mathbb{R}^{k}$ with the singular map $F_{0}$ having one of the forms (i) $F_{0}(x)=f(x),$ (ii) $F_{0}(x,y)=(f(x),g(x))$, where $g:\mathbb{R}^{m}\rightarrow \mathbb{R} ^{k}$ is continuous, and (iii) $F_{0}(x,y)=(f(x),g(x,y))$, where $g:\mathbb{R}^{m}\times \mathbb{R}^{k}\rightarrow \mathbb{R}^{k}$ is continuous and locally trapping along the second variable $y$. We show that if $f:\mathbb{R}^{m}\rightarrow \mathbb{R}^{m}$ is a $C^{1}$ diffeomorphism having a topologically crossing homoclinic point, then $F_{\lambda }$ has positive topological entropy for all $\lambda $ close enough to $0$.
Citation: Ming-Chia Li, Ming-Jiea Lyu. Positive topological entropy for multidimensional perturbations of topologically crossing homoclinicity. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 243-252. doi: 10.3934/dcds.2011.30.243
References:
[1]

K. Burns and H. Weiss, A geometric criterion for positive topological entropy, Comm. Math. Phys., 172 (1995), 95-118. doi: 10.1007/BF02104512.

[2]

M. Gidea and C. Robinson, Topologically crossing heteroclinic connections to invariant tori, J. Differential Equations, 193 (2003), 49-74. doi: 10.1016/S0022-0396(03)00065-2.

[3]

M. Gidea and P. Zgliczyński, Covering relations for multidimensional dynamical systems-II, J. Differential Equations, 202 (2004), 59-80. doi: 10.1016/j.jde.2004.03.014.

[4]

J. Juang, M.-C. Li and M. Malkin, Chaotic difference equations in two variables and their multidimensional perturbations, Nonlinearity, 21 (2008), 1019-1040. doi: 10.1088/0951-7715/21/5/007.

[5]

M.-C. Li and M.-J. Lyu, Topological dynamics for multidimensional perturbations of maps with covering relations and Liapunov condition, J. Differential Equations, 250 (2011), 799-812. doi: 10.1016/j.jde.2010.06.019.

[6]

M.-C Li, M.-J. Lyu and P. Zgliczyński, Topological entropy for multidimensional perturbations of snap-back repellers and one-dimensional maps, Nonlinearity, 21 (2008), 2555-2567. doi: 10.1088/0951-7715/21/11/005.

[7]

M.-C. Li and M. Malkin, Topological horseshoes for perturbations of singular difference equations, Nonlinearity, 19 (2006), 795-811. doi: 10.1088/0951-7715/19/4/002.

[8]

M. Misiurewicz and P. Zgliczyński, Topological entropy for multidimensional perturbations of one-dimensional maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 1443-1446. doi: 10.1142/S021812740100281X.

[9]

C. Robinson, "Dynamical Systems: Stability, Symbolic Dynamics, and Chaos," 2nd edition, CRC Press, Boca Raton, FL, 1999.

[10]

J. T. Schwartz, "Nonlinear Functional Analysis," Gordon and Breach Science Publishers, New York, 1969.

[11]

L.-S. Young, Chaotic phenomena in three settings: Large, noisy and out of equilibrium, Nonlinearity, 21 (2008), T245-T252. doi: 10.1088/0951-7715/21/11/T04.

[12]

P. Zgliczyński, Fixed point index for iterations, topological horseshoe and chaos, Topological Methods in Nonlinear Analysis, 8 (1996), 169-177.

[13]

P. Zgliczyński, Computer assisted proof of chaos in the Rössler equations and in the Hénon map, Nonlinearity, 10 (1997), 243-252. doi: 10.1088/0951-7715/10/1/016.

[14]

P. Zgliczyński and M. Gidea, Covering relations for multidimensional dynamical systems, J. Differential Equations, 202 (2004), 32-58. doi: 10.1016/j.jde.2004.03.013.

show all references

References:
[1]

K. Burns and H. Weiss, A geometric criterion for positive topological entropy, Comm. Math. Phys., 172 (1995), 95-118. doi: 10.1007/BF02104512.

[2]

M. Gidea and C. Robinson, Topologically crossing heteroclinic connections to invariant tori, J. Differential Equations, 193 (2003), 49-74. doi: 10.1016/S0022-0396(03)00065-2.

[3]

M. Gidea and P. Zgliczyński, Covering relations for multidimensional dynamical systems-II, J. Differential Equations, 202 (2004), 59-80. doi: 10.1016/j.jde.2004.03.014.

[4]

J. Juang, M.-C. Li and M. Malkin, Chaotic difference equations in two variables and their multidimensional perturbations, Nonlinearity, 21 (2008), 1019-1040. doi: 10.1088/0951-7715/21/5/007.

[5]

M.-C. Li and M.-J. Lyu, Topological dynamics for multidimensional perturbations of maps with covering relations and Liapunov condition, J. Differential Equations, 250 (2011), 799-812. doi: 10.1016/j.jde.2010.06.019.

[6]

M.-C Li, M.-J. Lyu and P. Zgliczyński, Topological entropy for multidimensional perturbations of snap-back repellers and one-dimensional maps, Nonlinearity, 21 (2008), 2555-2567. doi: 10.1088/0951-7715/21/11/005.

[7]

M.-C. Li and M. Malkin, Topological horseshoes for perturbations of singular difference equations, Nonlinearity, 19 (2006), 795-811. doi: 10.1088/0951-7715/19/4/002.

[8]

M. Misiurewicz and P. Zgliczyński, Topological entropy for multidimensional perturbations of one-dimensional maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 1443-1446. doi: 10.1142/S021812740100281X.

[9]

C. Robinson, "Dynamical Systems: Stability, Symbolic Dynamics, and Chaos," 2nd edition, CRC Press, Boca Raton, FL, 1999.

[10]

J. T. Schwartz, "Nonlinear Functional Analysis," Gordon and Breach Science Publishers, New York, 1969.

[11]

L.-S. Young, Chaotic phenomena in three settings: Large, noisy and out of equilibrium, Nonlinearity, 21 (2008), T245-T252. doi: 10.1088/0951-7715/21/11/T04.

[12]

P. Zgliczyński, Fixed point index for iterations, topological horseshoe and chaos, Topological Methods in Nonlinear Analysis, 8 (1996), 169-177.

[13]

P. Zgliczyński, Computer assisted proof of chaos in the Rössler equations and in the Hénon map, Nonlinearity, 10 (1997), 243-252. doi: 10.1088/0951-7715/10/1/016.

[14]

P. Zgliczyński and M. Gidea, Covering relations for multidimensional dynamical systems, J. Differential Equations, 202 (2004), 32-58. doi: 10.1016/j.jde.2004.03.013.

[1]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

[2]

Jaume Llibre. Brief survey on the topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363

[3]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 545-557 . doi: 10.3934/dcds.2011.31.545

[4]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[5]

Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201

[6]

Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827

[7]

Lluís Alsedà, David Juher, Francesc Mañosas. Forward triplets and topological entropy on trees. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 623-641. doi: 10.3934/dcds.2021131

[8]

Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147

[9]

Xiaomin Zhou. Relative entropy dimension of topological dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6631-6642. doi: 10.3934/dcds.2019288

[10]

Yun Zhao, Wen-Chiao Cheng, Chih-Chang Ho. Q-entropy for general topological dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2059-2075. doi: 10.3934/dcds.2019086

[11]

Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75

[12]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[13]

Yujun Ju, Dongkui Ma, Yupan Wang. Topological entropy of free semigroup actions for noncompact sets. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 995-1017. doi: 10.3934/dcds.2019041

[14]

César J. Niche. Topological entropy of a magnetic flow and the growth of the number of trajectories. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 577-580. doi: 10.3934/dcds.2004.11.577

[15]

Tao Wang, Yu Huang. Weighted topological and measure-theoretic entropy. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3941-3967. doi: 10.3934/dcds.2019159

[16]

José S. Cánovas. Topological sequence entropy of $\omega$–limit sets of interval maps. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 781-786. doi: 10.3934/dcds.2001.7.781

[17]

N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647

[18]

João Ferreira Alves, Michal Málek. Zeta functions and topological entropy of periodic nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 465-482. doi: 10.3934/dcds.2013.33.465

[19]

Daniel J. Thompson. A criterion for topological entropy to decrease under normalised Ricci flow. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1243-1248. doi: 10.3934/dcds.2011.30.1243

[20]

Dou Dou, Meng Fan, Hua Qiu. Topological entropy on subsets for fixed-point free flows. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6319-6331. doi: 10.3934/dcds.2017273

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (74)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]