April  2011, 30(1): 299-312. doi: 10.3934/dcds.2011.30.299

Non-integrability of the collinear three-body problem

1. 

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

Received  January 2010 Revised  October 2010 Published  February 2011

We consider the collinear three-body problem where the particles 1, 2, 3 with masses $m_{1}, m_{2}, m_{3}$ are on a common line in this order. We restrict the mass parameters to those that satisfy an "allowable" condition. We associate the binary collision of particle 1 and 2 with symbol "1", one of 2 and 3 with "3", and the triple collision with "2", and then represent the patterns of collisions of orbits in the time evolution using the symbol sequences. Inducing a tiling on an appropriate cross section, we prove that for any symbol sequence with some condition, there exists an orbit realizing the sequence. Furthermore we show the existence of infinitely many periodic solutions. Our novel result is the non-integrability of the collinear three-body problem with the allowable masses.
Citation: Mitsuru Shibayama. Non-integrability of the collinear three-body problem. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 299-312. doi: 10.3934/dcds.2011.30.299
References:
[1]

R. L. Devaney, Triple collision in the planar isosceles three body problem,, Invent. Math., 60 (1980), 249.  doi: 10.1007/BF01390017.  Google Scholar

[2]

S. R. Kaplan, Symbolic dynamics of the collinear three-body problem,, in, 246 (1999), 143.   Google Scholar

[3]

R. McGehee, Triple collision in the collinear three-body problem,, Invent. Math., 27 (1974), 191.  doi: 10.1007/BF01390175.  Google Scholar

[4]

K. Meyer and Q. Wang, The collinear three-body problem with negative energy,, J. Differential Equations, 119 (1995), 284.  doi: 10.1006/jdeq.1995.1092.  Google Scholar

[5]

J. J. Morales-Ruiz and J. P. Ramis, A note on the non-integrability of some Hamiltonian systems with a homogeneous potential,, Methods Appl. Anal., 8 (2001), 113.   Google Scholar

[6]

D. G. Saari and Z. Xia, The existence of oscillatory and super hyperbolic motion in newtonian systems,, J. Differential Equations, 82 (1989), 342.  doi: 10.1016/0022-0396(89)90137-X.  Google Scholar

[7]

M. M. Saito and K. Tanikawa, The rectilinear three-body problem using symbol sequence I: Role of triple collision,, Celest. Mech. Dyn. Astr., 98 (2007), 95.  doi: 10.1007/s10569-007-9070-0.  Google Scholar

[8]

M. M. Saito and K. Tanikawa, The rectilinear three-body problem using symbol sequence II: Role of the periodic orbits,, Celest. Mech. Dyn. Astr., 103 (2009), 191.  doi: 10.1007/s10569-008-9175-0.  Google Scholar

[9]

C. Siegel and J. Moser, "Lectures on Celestial Mechanics,", Springer-Verlag, (1971).   Google Scholar

[10]

C. Simó, Masses for which triple collision is regularizable,, Celestial Mech., 21 (1980), 25.  doi: 10.1007/BF01230243.  Google Scholar

[11]

H. Yoshida, A criterion for the non-existence of an additional integral in Hamiltonian systems with a homogeneous potential,, Physica D, 29 (1987), 128.  doi: 10.1016/0167-2789(87)90050-9.  Google Scholar

show all references

References:
[1]

R. L. Devaney, Triple collision in the planar isosceles three body problem,, Invent. Math., 60 (1980), 249.  doi: 10.1007/BF01390017.  Google Scholar

[2]

S. R. Kaplan, Symbolic dynamics of the collinear three-body problem,, in, 246 (1999), 143.   Google Scholar

[3]

R. McGehee, Triple collision in the collinear three-body problem,, Invent. Math., 27 (1974), 191.  doi: 10.1007/BF01390175.  Google Scholar

[4]

K. Meyer and Q. Wang, The collinear three-body problem with negative energy,, J. Differential Equations, 119 (1995), 284.  doi: 10.1006/jdeq.1995.1092.  Google Scholar

[5]

J. J. Morales-Ruiz and J. P. Ramis, A note on the non-integrability of some Hamiltonian systems with a homogeneous potential,, Methods Appl. Anal., 8 (2001), 113.   Google Scholar

[6]

D. G. Saari and Z. Xia, The existence of oscillatory and super hyperbolic motion in newtonian systems,, J. Differential Equations, 82 (1989), 342.  doi: 10.1016/0022-0396(89)90137-X.  Google Scholar

[7]

M. M. Saito and K. Tanikawa, The rectilinear three-body problem using symbol sequence I: Role of triple collision,, Celest. Mech. Dyn. Astr., 98 (2007), 95.  doi: 10.1007/s10569-007-9070-0.  Google Scholar

[8]

M. M. Saito and K. Tanikawa, The rectilinear three-body problem using symbol sequence II: Role of the periodic orbits,, Celest. Mech. Dyn. Astr., 103 (2009), 191.  doi: 10.1007/s10569-008-9175-0.  Google Scholar

[9]

C. Siegel and J. Moser, "Lectures on Celestial Mechanics,", Springer-Verlag, (1971).   Google Scholar

[10]

C. Simó, Masses for which triple collision is regularizable,, Celestial Mech., 21 (1980), 25.  doi: 10.1007/BF01230243.  Google Scholar

[11]

H. Yoshida, A criterion for the non-existence of an additional integral in Hamiltonian systems with a homogeneous potential,, Physica D, 29 (1987), 128.  doi: 10.1016/0167-2789(87)90050-9.  Google Scholar

[1]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[2]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[3]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[4]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[5]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[6]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[7]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[8]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[9]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[10]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[11]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[12]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[13]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[14]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[15]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[16]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[17]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[18]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[19]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[20]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]