Citation: |
[1] |
J. Aaronson, "An Introduction to Infinite Ergodic Theory," Mathematical Surveys and Monographs Vol. 50, American Mathematical Society, 1997. |
[2] |
R. Brück, Geometric properties of Julia sets of the composition of polynomials of the form $z^2+c_n$, Pacific J. Math., 198 (2001), 347-372.doi: 10.2140/pjm.2001.198.347. |
[3] |
R. Brück, M. Büger and S. Reitz, Random iterations of polynomials of the form $z^2+c_n$: Connectedness of Julia sets, Ergodic Theory Dynam. Systems, 19 (1999), 1221-1231.doi: 10.1017/S0143385799141658. |
[4] |
M. Büger, Self-similarity of Julia sets of the composition of polynomials, Ergodic Theory Dynam. Systems, 17 (1997), 1289-1297.doi: 10.1017/S0143385797086458. |
[5] |
M. Büger, On the composition of polynomials of the form $z^2+c_n$, Math. Ann., 310 (1998), 661-683. |
[6] |
L. Carleson, P. W. Jones and J. -C. Yoccoz, Julia and John, Bol. Soc. Brazil. Math., 25 (1994), 1-30. |
[7] |
M. Denker and M. Urbański, On the existence of conformal measures, Trans. Amer. Math. Soc., 328 (1991), 563-587.doi: 10.2307/2001795. |
[8] |
M. Denker and M. Urbański, Ergodic theory of equilibrium states for rational maps, Nonlinearity, 4 (1991), 103-134.doi: 10.1088/0951-7715/4/1/008. |
[9] |
M. Denker and M. Urbański, On Sullivan's conformal measures for rational maps of the Riemann sphere, Nonlinearity, 4 (1991), 365-384.doi: 10.1088/0951-7715/4/2/008. |
[10] |
R. Devaney, "An Introduction to Chaotic Dynamical Systems," Reprint of the second (1989) edition. Studies in Nonlinearity, Westview Press, Boulder, CO, 2003. |
[11] |
K. Falconer, "Techniques in Fractal Geometry," John Wiley & Sons, 1997. |
[12] | |
[13] |
J. E. Fornaess and N. Sibony, Random iterations of rational functions, Ergodic Theory Dynam. Systems, 11 (1991), 687-708.doi: 10.1017/S0143385700006428. |
[14] |
Z. Gong, W. Qiu and Y. Li, Connectedness of Julia sets for a quadratic random dynamical system, Ergodic Theory Dynam. Systems, 23 (2003), 1807-1815.doi: 10.1017/S0143385703000129. |
[15] |
A. Hinkkanen and G. J. Martin, The dynamics of semigroups of rational functions I, Proc. London Math. Soc. (3), 73 (1996), 358-384.doi: 10.1112/plms/s3-73.2.358. |
[16] |
A. Hinkkanen and G. J. Martin, Julia Sets of Rational Semigroups, Math. Z., 222 (1996), 161-169. |
[17] |
M. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems, 3 (1983), 351-386. |
[18] |
M. Martens, The existence of σ-finite invariant measures, Applications to real one-dimensional dynamics, Front for the Math., http://front.math.ucdavis.edu/math.DS/9201300. |
[19] |
P. Mattila, "Geometry of Sets and Measures in Euclidean spaces. Fractals and Rectifiability," Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge, 1995. |
[20] |
R. D. Mauldin, T. Szarek and M. Urbański, Graph directed Markov systems on Hilbert spaces, Math. Proc. Cambridge Phil. Soc., 147 (2009), 455-488.doi: 10.1017/S0305004109002448. |
[21] |
R. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc. (3), 73 (1996), 105-154.doi: 10.1112/plms/s3-73.1.105. |
[22] |
R. D. Mauldin and M. Urbański, "Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets," Cambridge Univ. Press, 2003.doi: 10.1017/CBO9780511543050. |
[23] |
J. Milnor, "Dynamics in One Complex Variable (Third Edition)," Annals of Mathematical Studies, Number 160, Princeton University Press, 2006. |
[24] |
V. Mayer, B. Skorulski and M. Urbański, Random distance expanding mappings, thermodynamic formalism, Gibbs measures, and fractal geometry, preprint 2008, http://www.math.unt.edu/ urbanski/papers.html. |
[25] |
W. Parry, "Entropy and Generators in Ergodic Theory," Mathematics Lecture Note Series, 1969, Benjamin Inc., 1969. |
[26] |
F. Przytycki and M. Urbański, "Fractals in the Plane - The Ergodic Theory Methods," to be published from Cambridge University Press, see http://www.math.unt.edu/ urbanski/. |
[27] |
D. Ruelle, "Thermodynamic Formalism," Encyclopedia of Math. and Appl., 5, Addison-Wesley, Reading Mass., 1978. |
[28] |
R. Stankewitz, Completely invariant Julia sets of polynomial semigroups, Proc. Amer. Math. Soc., 127 (1999), 2889-2898.doi: 10.1090/S0002-9939-99-04857-1. |
[29] |
R. Stankewitz, Completely invariant sets of normality for rational semigroups, Complex Variables Theory Appl., 40 (2000), 199-210. |
[30] |
R. Stankewitz, Uniformly perfect sets, rational semigroups, Kleinian groups and IFS's, Proc. Amer. Math. Soc., 128 (2000), 2569-2575.doi: 10.1090/S0002-9939-00-05313-2. |
[31] |
R. Stankewitz, T. Sugawa and H. Sumi, Some counterexamples in dynamics of rational semigroups, Annales Academiae Scientiarum Fennicae Mathematica, 29 (2004), 357-366. |
[32] |
R. Stankewitz and H. Sumi, Dynamical properties and structure of Julia sets of postcritically bounded polynomial semigroups, to appear in Trans. Amer. Math. Soc., http://arxiv.org/abs/0708.3187. |
[33] |
D. Steinsaltz, Random logistic maps and Lyapunov exponents, Indag. Mathem., N. S., 12 (2001), 557-584. |
[34] |
H. Sumi, On dynamics of hyperbolic rational semigroups, J. Math. Kyoto Univ., 37 (1997), 717-733. |
[35] |
H. Sumi, On Hausdorff dimension of Julia sets of hyperbolic rational semigroups, Kodai Mathematical Journal, 21 (1998), 10-28.doi: 10.2996/kmj/1138043831. |
[36] |
H. Sumi, Skew product maps related to finitely generated rational semigroups, Nonlinearity, 13 (2000), 995-1019.doi: 10.1088/0951-7715/13/4/302. |
[37] |
H. Sumi, Dynamics of sub-hyperbolic and semi-hyperbolic rational semigroups and skew products, Ergodic Theory Dynam. Systems, 21 (2001), 563-603. |
[38] |
H. Sumi, Dimensions of Julia sets of expanding rational semigroups, Kodai Mathematical Journal, 28 (2005), 390-422; Also available from http://arxiv.org/abs/math/0405522. |
[39] |
H. Sumi, Semi-hyperbolic fibered rational maps and rational semigroups, Ergodic Theory Dynam. Systems, 26 (2006), 893-922.doi: 10.1017/S0143385705000532. |
[40] |
H. Sumi, Random dynamics of polynomials and devil's-staircase-like functions in the complex plane, Appl. Math. Comput., 187 (2007), 489-500.doi: 10.1016/j.amc.2006.08.149. |
[41] |
H. Sumi, The space of postcritically bounded 2-generator polynomial semigroups with hyperbolicity, RIMS Kokyuroku, 1494 (2006), 62-86. |
[42] |
H. Sumi, Dynamics of postcritically bounded polynomial semigroups I: connected components of the Julia sets, Discrete and Continuous Dynamical Systems Ser. A, 29 (2011), 1205-1244.doi: 10.3934/dcds.2011.29.1205. |
[43] |
H. Sumi, Dynamics of postcritically bounded polynomial semigroups II: Fiberwise dynamics and the Julia sets, preprint, http://arxiv.org/abs/1007.0613. |
[44] |
H. Sumi, Dynamics of postcritically bounded polynomial semigroups III: Classification of semi-hyperbolic semigroups and random Julia sets which are Jordan curves but not quasicircles, Ergodic Theory Dynam. Systems, 30 (2010), 1869-1902.doi: 10.1017/S0143385709000923. |
[45] |
H. Sumi, Dynamics of postcritically bounded polynomial semigroups, preprint 2007, http://arxiv.org/abs/math/0703591. |
[46] |
H. Sumi, Interaction cohomology of forward or backward self-similar systems, Adv. Math., 222 (2009), 729-781.doi: 10.1016/j.aim.2009.04.007. |
[47] |
H. Sumi, Random complex dynamics and semigroups of holomorphic maps, Proc. London Math. Soc., 102 (2011), 50-112.doi: 10.1112/plms/pdq013. |
[48] |
H. Sumi, Cooperation principle, stability and bifurcation in random complex dynamics, preprint 2010, http://arxiv.org/abs/1008.3995. |
[49] |
H. Sumi and M. Urbański, The equilibrium states for semigroups of rational maps, Monatsh. Math., 156 (2009), 371-390.doi: 10.1007/s00605-008-0016-8. |
[50] |
H. Sumi and M. Urbański, Real analyticity of Hausdorff dimension for expanding rational semigroups, Ergodic Theory Dynam. Systems, 30 (2010), 601-633.doi: 10.1017/S0143385709000297. |
[51] |
M. Urbański, Rational functions with no recurrent critical points, Ergodic Theory Dynam. Systems, 14 (1994), 391-414. |
[52] |
M. Urbański, Geometry and ergodic theory of conformal non-recurrent dynamics, Ergodic Theory Dynam. Systems, 17 (1997), 1449-1476.doi: 10.1017/S014338579708646X. |
[53] |
P. Walters, "An Introduction to Ergodic Theory," Springer-Verlag, 1982. |
[54] |
W. Zhou and and F. Ren, The Julia sets of the random iteration of rational functions, Chinese Sci. Bulletin, 37 (1992), 969-971. |