May  2011, 30(2): 379-426. doi: 10.3934/dcds.2011.30.379

Attaching maps in the standard geodesics problem on $S^2$

1. 

Hill Center for the Mathematical Sciences, Rutgers University, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019

Received  March 2010 Revised  April 2010 Published  February 2011

Unstable manifolds of critical points at infinity in the variational problems relating to periodic orbits of Reeb vector-fields in Contact Form Geometry are viewed in this paper as part of the attaching maps along which these variational problems attach themselves to natural generalizations that they have. The specific periodic orbit problem for the Reeb vector-field $\xi_0$ of the standard contact structure/form of $S^3$ is studied; the extended variational problem is the closed geodesics problem on $S^2$. The attaching maps are studied for low-dimensional (at most $4$) cells. Some circle and ''loop" actions on the loop space of $S^3$, that are lifts (via Hopf-fibration map) of the standard $S^1$-action on the free loop space of $S^2$, are also defined. ''Conjugacy" relations relating these actions are established.
Citation: Abbas Bahri. Attaching maps in the standard geodesics problem on $S^2$. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 379-426. doi: 10.3934/dcds.2011.30.379
References:
[1]

A. Bahri, "Pseudo-Orbits of Contact Forms,", Pitman Research Notes in Mathematics Series No. 173, (1988).   Google Scholar

[2]

A. Bahri, "Flow-lines and Algebraic invariants in Contact Form Geometry PNLDE,", "Flow-lines and Algebraic invariants in Contact Form Geometry PNLDE,", 53 (2003).   Google Scholar

[3]

A. Bahri, Compactness,, Advanced Nonlinear Stud., 8 (2008), 465.   Google Scholar

[4]

A. Bahri, Topological remarks-critical points at infinity and string theory,, Advanced Nonlinear Studies, 9 (2009), 499.   Google Scholar

[5]

M. Chas and D. Sullivan, String topology,, preprint, 1 (1999).   Google Scholar

[6]

Y. Eliashberg, Contact 3-manifolds twenty years since J. Martinet's work,, Ann. Inst. Fourier, 42 (1992), 165.   Google Scholar

[7]

H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three,, Inventiones Mathematicae, 114 (1993), 515.  doi: doi:10.1007/BF01232679.  Google Scholar

[8]

W. Klingenberg, Closed geodesics on surfaces of genus 0,, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 6 (1979), 19.   Google Scholar

[9]

L. Menichi, String topology for spheres,, Comment. Math. Helv, 84 (2009), 135.  doi: doi:10.4171/CMH/155.  Google Scholar

[10]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems,, Comm. Pure. Appl. Math., 31 (1978), 157.  doi: doi:10.1002/cpa.3160310203.  Google Scholar

[11]

D. Sullivan, Infinitesimal computations in topology,, I.H.E.S., 47 (1977), 269.   Google Scholar

[12]

C. H. Taubes, The Seiberg-Witten equations and the Weinstein conjecture,, Geom. Topol., 11 (2007), 2117.  doi: doi:10.2140/gt.2007.11.2117.  Google Scholar

[13]

A. S. Zvarc, Homology of the space of closed curves,, Trudy Moskov, 9 (1960), 3.   Google Scholar

show all references

References:
[1]

A. Bahri, "Pseudo-Orbits of Contact Forms,", Pitman Research Notes in Mathematics Series No. 173, (1988).   Google Scholar

[2]

A. Bahri, "Flow-lines and Algebraic invariants in Contact Form Geometry PNLDE,", "Flow-lines and Algebraic invariants in Contact Form Geometry PNLDE,", 53 (2003).   Google Scholar

[3]

A. Bahri, Compactness,, Advanced Nonlinear Stud., 8 (2008), 465.   Google Scholar

[4]

A. Bahri, Topological remarks-critical points at infinity and string theory,, Advanced Nonlinear Studies, 9 (2009), 499.   Google Scholar

[5]

M. Chas and D. Sullivan, String topology,, preprint, 1 (1999).   Google Scholar

[6]

Y. Eliashberg, Contact 3-manifolds twenty years since J. Martinet's work,, Ann. Inst. Fourier, 42 (1992), 165.   Google Scholar

[7]

H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three,, Inventiones Mathematicae, 114 (1993), 515.  doi: doi:10.1007/BF01232679.  Google Scholar

[8]

W. Klingenberg, Closed geodesics on surfaces of genus 0,, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 6 (1979), 19.   Google Scholar

[9]

L. Menichi, String topology for spheres,, Comment. Math. Helv, 84 (2009), 135.  doi: doi:10.4171/CMH/155.  Google Scholar

[10]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems,, Comm. Pure. Appl. Math., 31 (1978), 157.  doi: doi:10.1002/cpa.3160310203.  Google Scholar

[11]

D. Sullivan, Infinitesimal computations in topology,, I.H.E.S., 47 (1977), 269.   Google Scholar

[12]

C. H. Taubes, The Seiberg-Witten equations and the Weinstein conjecture,, Geom. Topol., 11 (2007), 2117.  doi: doi:10.2140/gt.2007.11.2117.  Google Scholar

[13]

A. S. Zvarc, Homology of the space of closed curves,, Trudy Moskov, 9 (1960), 3.   Google Scholar

[1]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[2]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[3]

Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133

[4]

Xiao-Xu Chen, Peng Xu, Jiao-Jiao Li, Thomas Walker, Guo-Qiang Yang. Decision-making in a retailer-led closed-loop supply chain involving a third-party logistics provider. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021014

[5]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[6]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[7]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[8]

Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, , () : -. doi: 10.3934/era.2021001

[9]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[10]

Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021001

[11]

Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139

[12]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[13]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[14]

Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383

[15]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[16]

Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309

[17]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[18]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285

[19]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[20]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]