-
Previous Article
Interpolation by linear programming I
- DCDS Home
- This Issue
-
Next Article
An entropy based theory of the grain boundary character distribution
Elliptic equations and systems with critical Trudinger-Moser nonlinearities
1. | IMECC-UNICAMP, Caixa Postal 6065, CEP: 13081-970, Campinas - SP, Brazil |
2. | Departamento de Matemática–Universidade Federal da Paraíba, 58051-900, João Pessoa–PB |
3. | Dip. di Matematica, Universita degli Studi, Via Saldini 50, 20133 Milano, Italy |
References:
[1] |
S. Adachi and K. Tanaka, Trudinger type inequalities in $\mathbb{R}^N2$ and their best exponents, Proc. Amer. Math. Soc., 128 (2000), 2051-2057.
doi: 10.1090/S0002-9939-99-05180-1. |
[2] |
D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Annals of Math., 128 (1988), 385-398.
doi: 10.2307/1971445. |
[3] |
R. A. Adams and J. F. Fournier, "Sobolev Spaces,'' Second Edition, Academic Press, 2003 |
[4] |
Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian, Ann. Sc. Norm. Sup. Pisa, vol XVII (1990), 393-413. |
[5] |
Adimurthi and O. Druet, Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality, Comm. Part. Diff. Equ., 29 (2004), 295-322.
doi: 10.1081/PDE-120028854. |
[6] |
Adimurthi and K. Sandeep, A singular Moser-Trudinger embedding and its applications, NoDEA Nonlinear Differential Equations Appl., 13 (2007), 585-603.
doi: 10.1007/s00030-006-4025-9. |
[7] |
A. Alvino, V. Ferone and G. Trombetti, Moser-type inequalities in Lorentz spaces, Potential Anal., 5 (1996), 273-299. |
[8] |
A. Alvino, P.-L. Lions and G. Trombetti, On optimization problems with prescribed rearrangements, Nonlinear Anal. T.M.A., 13 (1989), 185-220.
doi: 10.1016/0362-546X(89)90043-6. |
[9] |
V. V. Atkinson and L. A. Peletier, Ground states and Dirichlet problems for $-\Delta u = f(u)$ in $\mathbb R^2$, Arch. Rational Mech. Anal., 96 (1986), 147-165.
doi: 10.1007/BF00251409. |
[10] |
A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.
doi: 10.1016/0022-1236(73)90051-7. |
[11] |
A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.
doi: 10.1002/cpa.3160410302. |
[12] |
H. Berestycki and P.-L. Lions, Nonlinear scalar field equations, I. Existence of ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. |
[13] |
H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic problems involving critical Sovolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.
doi: 10.1002/cpa.3160360405. |
[14] |
H. Brezis and S. Wainger, A note on limiting cases of Sobolev embeddings, Comm. Partial Diff. Eqations, 5 (1980), 773-789.
doi: 10.1080/03605308008820154. |
[15] |
D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbb R^2$, Comm. Partial Differential Equations, 17 (1992), 407-435.
doi: 10.1080/03605309208820848. |
[16] |
L. Carleson and S.-Y. A. Chang, On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math., Sér. 2, 110 (1986), 113-127. |
[17] |
M. Calanchi and E. Terraneo, Non-radial maximizers for functionals with exponential non-linearity in $\mathbb R^2$, Adv. Nonlinear Stud., 5 (2005), 337-350. |
[18] |
P. Cherrier, Cas d'exception du théorème d'inclusion de Sobolev sur le variétés Riemanniennes e applications, Bull. Sci. Math. (2), 105 (1981), 235-288. |
[19] |
A. Cianchi, A sharp embedding theorem for Orlicz-Sobolev spaces, Indiana U. Math. J., 45 (1996), 39-65.
doi: 10.1512/iumj.1996.45.1958. |
[20] |
A. Cianchi, Moser-Trudinger inequalities without boundary conditions and isoperimetric problems, Indiana U. Math. J., 54 (2005), 669-705.
doi: 10.1512/iumj.2005.54.2589. |
[21] |
A. Cianchi, Moser-Trudinger trace inequalities, Adv. Math., 217 (2008), 2005-2044.
doi: 10.1016/j.aim.2007.09.007. |
[22] |
M. Comte, Solutions of elliptic equations with critical exponents in dimension 3, Nonlin. Ana. TMA, 17 (1991), 445-455
doi: 10.1016/0362-546X(91)90139-R. |
[23] |
J.-M. Coron, Topologie et cas limite des injections de Sobolev, (French) [Topology and limit case of Sobolev embeddings], C. R. Acad. Sc. Paris Ser. I, 299 (1984), 209-212. |
[24] |
D. G. de Figueiredo, Positive solutions of semilinear elliptic problems, Differential equations (SÃo Paulo, 1981), pp. 34-87, Lecture Notes in Math., 957, Springer, Berlin-New York, 1982. |
[25] |
D. G. de Figueiredo and P. Felmer, On superquadratic elliptic systems, Trans. Am. Math. Soc., 343 (1994), 99-116. |
[26] |
D. G. de Figueiredo, J. M. do Ó and B. Ruf, On an inequality by N. Trudinger and J. Moser and related elliptic equations, Comm. Pure Appl. Math., 55 (2002), 135-152.
doi: 10.1002/cpa.10015. |
[27] |
D. G. de Figueiredo, J. M. do Ó and B. Ruf, Critical and subcritical elliptic systems in dimension two, Indiana Univ. Math. J., 53 (2004), 1037-1054.
doi: 10.1512/iumj.2004.53.2402. |
[28] |
D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in $\mathbb R^2$ with nonlinearities in the critical growth range, Calc. Var., 3 (1995), 139-153.
doi: 10.1007/BF01205003. |
[29] |
D. G. de Figueiredo and B. Ruf, Existence and non-existence of radial solutions for elliptic equations with critical exponent in $\mathbb R^2$, Comm. Pure Appl. Math., 48 (1995), 639-655
doi: 10.1002/cpa.3160480605. |
[30] |
M. del Pino, M. Musso and B. Ruf, New solutions for Trudinger-Moser critical equations in $\mathbb R^2$, J. Functional Analysis, 258 (2010), 421-457.
doi: 10.1016/j.jfa.2009.06.018. |
[31] |
J. M. do Ó, Semilinear Dirichlet problems for the $N-$Laplacian in $\mathbb R^N$ with nonlinearities in the critical growth range, Differential Integral Equations, 9 (1996), 967-979. |
[32] |
J. M. do Ó, $N$-Laplacian equations in $ \mathbbR^N$ with critical growth, Abstr. Appl. Anal., 2 (1997), 301-315.
doi: 10.1155/S1085337597000419. |
[33] |
O. Druet, Multibump analysis in dimension 2: Quantification of blow-up levels, Duke Math. J., 132 (2006), 217-269.
doi: 10.1215/S0012-7094-06-13222-2. |
[34] |
D. E. Edmunds, P. Gurka and B. Opic, Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces, Indiana Univ. Math. J., 44 (1995), 19-43.
doi: 10.1512/iumj.1995.44.1977. |
[35] |
M. Flucher, Extremal functions for the Trudinger-Moser inequality in 2 dimensions, Comment. Math. Helv., 67 (1992), 471-497.
doi: 10.1007/BF02566514. |
[36] |
L. Fontana, Sharp borderline Sobolev inequalities on compact Riemannian manifolds, Comment. Math. Helvetici, 68 (1993), 415-454.
doi: 10.1007/BF02565828. |
[37] |
N. Fusco, P.-L. Lions and C. Sbordone, Sobolev imbedding theorems in borderline cases, Proc. AMS, 124 (1996), 561-565. |
[38] |
B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.
doi: 10.1007/BF01221125. |
[39] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,'' Second Edition. Grundlehren der Mathematischen Wissenschaften, 224 Springer-Verlag, Berlin, 1983. |
[40] |
S. Hencl, A sharp form of an embedding into exponential and double exponential spaces, J. Funct. A., 204 (2003), 196-227.
doi: 10.1016/S0022-1236(02)00172-6. |
[41] |
J. Hulshof and R. van der Vorst, Differential systems with strongly indefinite variational structure, J. Funct. Anal., 114 (1993), 32-58.
doi: 10.1006/jfan.1993.1062. |
[42] |
J. Hulshof, E. Mitidieri and R. Van der Vorst, Strongly indefinite systems with critical Sobolev exponents. Trans. Amer. Math. Soc., 350 (1998), 2349-2365.
doi: 10.1090/S0002-9947-98-02159-X. |
[43] |
Y. Li, Moser-Trudinger inequality on compact Riemannian manifolds of dimension two, J. Partial Differential Equ., 14 (2001), 163-192. |
[44] |
Y. Li, Extremal functions for the Moser-Trudinger inequalities on compact Riemannian manifolds, Sci. China Ser. A, 48 (2005), 618-648.
doi: 10.1360/04ys0050. |
[45] |
K. C. Lin, Extremal functions for Moser's inequality, Trans. Amer. Math. Soc., 348 (1996), 2663-2671.
doi: 10.1090/S0002-9947-96-01541-3. |
[46] |
P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part 1, Rev. Mat. Iberoamericana, 1 (1985), 145-201. |
[47] |
G. G. Lorentz, On the theory of spaces $\Lambda$, Pacific J. Math, 1 (1951), 411-429. |
[48] |
J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092.
doi: 10.1512/iumj.1971.20.20101. |
[49] |
S. I. Pohozaev, The Sobolev embedding in the case $pl = n$, Proc. of the Technical Scientific Conference on Advances of Scientific Research 1964-1965, Mathematics Section, (Moskov. Energet. Inst., Moscow), (1965), 158-170. |
[50] |
S. I. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Dokl. Adad. Nauk SSSR, 165 (1965), 36-39. [Sov. Math., Dokl. 6, 1408-1411 (1965)] |
[51] |
P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,'' CBMS Regional Conf. Ser. in Math., 65, AMS, Providence, RI, 1986. |
[52] |
B. Ruf, Lorentz spaces and nonlinear elliptic systems, Contributions to Nonlinear Analysis, Progr. Nonlinear Differential Equations Appl., 66, Birkhäuser, Basel, (2006), 471-489. |
[53] |
B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbb R^2$, J. Funct. Analysis, 219 (2004), 340-367.
doi: 10.1016/j.jfa.2004.06.013. |
[54] |
B. Ruf and C. Tarsi, On Trudinger-Moser type inequalities involving Sobolev-Lorentz spaces, Annali Mat. Pura ed Appl. 1, 88 (2009), 369-397. |
[55] |
J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. Math., 113 (1981), 1-24.
doi: 10.2307/1971131. |
[56] |
W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.
doi: 10.1007/BF01626517. |
[57] |
M. Struwe, Critical points of embeddings of $H^{1,n}_0$ into Orlicz spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 425-464. |
[58] |
M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187 (1984), 511-517.
doi: 10.1007/BF01174186. |
[59] |
M. Struwe, Positive solutions of critical semilinear elliptic equations on non-contractible, J. Eur. Math. Soc., 2 (2000), 329-388.
doi: 10.1007/s100970000023. |
[60] |
N. S. Trudinger, On embeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483. |
[61] |
Y. Yang, Extremal functions for Moser-Trudinger inequalities on 2-dimensional compact Riemannian manifolds with boundary, Internat. J. Math., 17 (2006), 313-330.
doi: 10.1142/S0129167X06003473. |
show all references
References:
[1] |
S. Adachi and K. Tanaka, Trudinger type inequalities in $\mathbb{R}^N2$ and their best exponents, Proc. Amer. Math. Soc., 128 (2000), 2051-2057.
doi: 10.1090/S0002-9939-99-05180-1. |
[2] |
D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Annals of Math., 128 (1988), 385-398.
doi: 10.2307/1971445. |
[3] |
R. A. Adams and J. F. Fournier, "Sobolev Spaces,'' Second Edition, Academic Press, 2003 |
[4] |
Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian, Ann. Sc. Norm. Sup. Pisa, vol XVII (1990), 393-413. |
[5] |
Adimurthi and O. Druet, Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality, Comm. Part. Diff. Equ., 29 (2004), 295-322.
doi: 10.1081/PDE-120028854. |
[6] |
Adimurthi and K. Sandeep, A singular Moser-Trudinger embedding and its applications, NoDEA Nonlinear Differential Equations Appl., 13 (2007), 585-603.
doi: 10.1007/s00030-006-4025-9. |
[7] |
A. Alvino, V. Ferone and G. Trombetti, Moser-type inequalities in Lorentz spaces, Potential Anal., 5 (1996), 273-299. |
[8] |
A. Alvino, P.-L. Lions and G. Trombetti, On optimization problems with prescribed rearrangements, Nonlinear Anal. T.M.A., 13 (1989), 185-220.
doi: 10.1016/0362-546X(89)90043-6. |
[9] |
V. V. Atkinson and L. A. Peletier, Ground states and Dirichlet problems for $-\Delta u = f(u)$ in $\mathbb R^2$, Arch. Rational Mech. Anal., 96 (1986), 147-165.
doi: 10.1007/BF00251409. |
[10] |
A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.
doi: 10.1016/0022-1236(73)90051-7. |
[11] |
A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.
doi: 10.1002/cpa.3160410302. |
[12] |
H. Berestycki and P.-L. Lions, Nonlinear scalar field equations, I. Existence of ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. |
[13] |
H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic problems involving critical Sovolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.
doi: 10.1002/cpa.3160360405. |
[14] |
H. Brezis and S. Wainger, A note on limiting cases of Sobolev embeddings, Comm. Partial Diff. Eqations, 5 (1980), 773-789.
doi: 10.1080/03605308008820154. |
[15] |
D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbb R^2$, Comm. Partial Differential Equations, 17 (1992), 407-435.
doi: 10.1080/03605309208820848. |
[16] |
L. Carleson and S.-Y. A. Chang, On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math., Sér. 2, 110 (1986), 113-127. |
[17] |
M. Calanchi and E. Terraneo, Non-radial maximizers for functionals with exponential non-linearity in $\mathbb R^2$, Adv. Nonlinear Stud., 5 (2005), 337-350. |
[18] |
P. Cherrier, Cas d'exception du théorème d'inclusion de Sobolev sur le variétés Riemanniennes e applications, Bull. Sci. Math. (2), 105 (1981), 235-288. |
[19] |
A. Cianchi, A sharp embedding theorem for Orlicz-Sobolev spaces, Indiana U. Math. J., 45 (1996), 39-65.
doi: 10.1512/iumj.1996.45.1958. |
[20] |
A. Cianchi, Moser-Trudinger inequalities without boundary conditions and isoperimetric problems, Indiana U. Math. J., 54 (2005), 669-705.
doi: 10.1512/iumj.2005.54.2589. |
[21] |
A. Cianchi, Moser-Trudinger trace inequalities, Adv. Math., 217 (2008), 2005-2044.
doi: 10.1016/j.aim.2007.09.007. |
[22] |
M. Comte, Solutions of elliptic equations with critical exponents in dimension 3, Nonlin. Ana. TMA, 17 (1991), 445-455
doi: 10.1016/0362-546X(91)90139-R. |
[23] |
J.-M. Coron, Topologie et cas limite des injections de Sobolev, (French) [Topology and limit case of Sobolev embeddings], C. R. Acad. Sc. Paris Ser. I, 299 (1984), 209-212. |
[24] |
D. G. de Figueiredo, Positive solutions of semilinear elliptic problems, Differential equations (SÃo Paulo, 1981), pp. 34-87, Lecture Notes in Math., 957, Springer, Berlin-New York, 1982. |
[25] |
D. G. de Figueiredo and P. Felmer, On superquadratic elliptic systems, Trans. Am. Math. Soc., 343 (1994), 99-116. |
[26] |
D. G. de Figueiredo, J. M. do Ó and B. Ruf, On an inequality by N. Trudinger and J. Moser and related elliptic equations, Comm. Pure Appl. Math., 55 (2002), 135-152.
doi: 10.1002/cpa.10015. |
[27] |
D. G. de Figueiredo, J. M. do Ó and B. Ruf, Critical and subcritical elliptic systems in dimension two, Indiana Univ. Math. J., 53 (2004), 1037-1054.
doi: 10.1512/iumj.2004.53.2402. |
[28] |
D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in $\mathbb R^2$ with nonlinearities in the critical growth range, Calc. Var., 3 (1995), 139-153.
doi: 10.1007/BF01205003. |
[29] |
D. G. de Figueiredo and B. Ruf, Existence and non-existence of radial solutions for elliptic equations with critical exponent in $\mathbb R^2$, Comm. Pure Appl. Math., 48 (1995), 639-655
doi: 10.1002/cpa.3160480605. |
[30] |
M. del Pino, M. Musso and B. Ruf, New solutions for Trudinger-Moser critical equations in $\mathbb R^2$, J. Functional Analysis, 258 (2010), 421-457.
doi: 10.1016/j.jfa.2009.06.018. |
[31] |
J. M. do Ó, Semilinear Dirichlet problems for the $N-$Laplacian in $\mathbb R^N$ with nonlinearities in the critical growth range, Differential Integral Equations, 9 (1996), 967-979. |
[32] |
J. M. do Ó, $N$-Laplacian equations in $ \mathbbR^N$ with critical growth, Abstr. Appl. Anal., 2 (1997), 301-315.
doi: 10.1155/S1085337597000419. |
[33] |
O. Druet, Multibump analysis in dimension 2: Quantification of blow-up levels, Duke Math. J., 132 (2006), 217-269.
doi: 10.1215/S0012-7094-06-13222-2. |
[34] |
D. E. Edmunds, P. Gurka and B. Opic, Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces, Indiana Univ. Math. J., 44 (1995), 19-43.
doi: 10.1512/iumj.1995.44.1977. |
[35] |
M. Flucher, Extremal functions for the Trudinger-Moser inequality in 2 dimensions, Comment. Math. Helv., 67 (1992), 471-497.
doi: 10.1007/BF02566514. |
[36] |
L. Fontana, Sharp borderline Sobolev inequalities on compact Riemannian manifolds, Comment. Math. Helvetici, 68 (1993), 415-454.
doi: 10.1007/BF02565828. |
[37] |
N. Fusco, P.-L. Lions and C. Sbordone, Sobolev imbedding theorems in borderline cases, Proc. AMS, 124 (1996), 561-565. |
[38] |
B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.
doi: 10.1007/BF01221125. |
[39] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,'' Second Edition. Grundlehren der Mathematischen Wissenschaften, 224 Springer-Verlag, Berlin, 1983. |
[40] |
S. Hencl, A sharp form of an embedding into exponential and double exponential spaces, J. Funct. A., 204 (2003), 196-227.
doi: 10.1016/S0022-1236(02)00172-6. |
[41] |
J. Hulshof and R. van der Vorst, Differential systems with strongly indefinite variational structure, J. Funct. Anal., 114 (1993), 32-58.
doi: 10.1006/jfan.1993.1062. |
[42] |
J. Hulshof, E. Mitidieri and R. Van der Vorst, Strongly indefinite systems with critical Sobolev exponents. Trans. Amer. Math. Soc., 350 (1998), 2349-2365.
doi: 10.1090/S0002-9947-98-02159-X. |
[43] |
Y. Li, Moser-Trudinger inequality on compact Riemannian manifolds of dimension two, J. Partial Differential Equ., 14 (2001), 163-192. |
[44] |
Y. Li, Extremal functions for the Moser-Trudinger inequalities on compact Riemannian manifolds, Sci. China Ser. A, 48 (2005), 618-648.
doi: 10.1360/04ys0050. |
[45] |
K. C. Lin, Extremal functions for Moser's inequality, Trans. Amer. Math. Soc., 348 (1996), 2663-2671.
doi: 10.1090/S0002-9947-96-01541-3. |
[46] |
P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part 1, Rev. Mat. Iberoamericana, 1 (1985), 145-201. |
[47] |
G. G. Lorentz, On the theory of spaces $\Lambda$, Pacific J. Math, 1 (1951), 411-429. |
[48] |
J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092.
doi: 10.1512/iumj.1971.20.20101. |
[49] |
S. I. Pohozaev, The Sobolev embedding in the case $pl = n$, Proc. of the Technical Scientific Conference on Advances of Scientific Research 1964-1965, Mathematics Section, (Moskov. Energet. Inst., Moscow), (1965), 158-170. |
[50] |
S. I. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Dokl. Adad. Nauk SSSR, 165 (1965), 36-39. [Sov. Math., Dokl. 6, 1408-1411 (1965)] |
[51] |
P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,'' CBMS Regional Conf. Ser. in Math., 65, AMS, Providence, RI, 1986. |
[52] |
B. Ruf, Lorentz spaces and nonlinear elliptic systems, Contributions to Nonlinear Analysis, Progr. Nonlinear Differential Equations Appl., 66, Birkhäuser, Basel, (2006), 471-489. |
[53] |
B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbb R^2$, J. Funct. Analysis, 219 (2004), 340-367.
doi: 10.1016/j.jfa.2004.06.013. |
[54] |
B. Ruf and C. Tarsi, On Trudinger-Moser type inequalities involving Sobolev-Lorentz spaces, Annali Mat. Pura ed Appl. 1, 88 (2009), 369-397. |
[55] |
J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. Math., 113 (1981), 1-24.
doi: 10.2307/1971131. |
[56] |
W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.
doi: 10.1007/BF01626517. |
[57] |
M. Struwe, Critical points of embeddings of $H^{1,n}_0$ into Orlicz spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 425-464. |
[58] |
M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187 (1984), 511-517.
doi: 10.1007/BF01174186. |
[59] |
M. Struwe, Positive solutions of critical semilinear elliptic equations on non-contractible, J. Eur. Math. Soc., 2 (2000), 329-388.
doi: 10.1007/s100970000023. |
[60] |
N. S. Trudinger, On embeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483. |
[61] |
Y. Yang, Extremal functions for Moser-Trudinger inequalities on 2-dimensional compact Riemannian manifolds with boundary, Internat. J. Math., 17 (2006), 313-330.
doi: 10.1142/S0129167X06003473. |
[1] |
Kyril Tintarev. Is the Trudinger-Moser nonlinearity a true critical nonlinearity?. Conference Publications, 2011, 2011 (Special) : 1378-1384. doi: 10.3934/proc.2011.2011.1378 |
[2] |
Shengbing Deng, Xingliang Tian. On a nonhomogeneous Kirchhoff type elliptic system with the singular Trudinger-Moser growth. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022071 |
[3] |
Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505 |
[4] |
Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure and Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011 |
[5] |
Xiaobao Zhu. Remarks on singular trudinger-moser type inequalities. Communications on Pure and Applied Analysis, 2020, 19 (1) : 103-112. doi: 10.3934/cpaa.2020006 |
[6] |
Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1747-1756. doi: 10.3934/dcdss.2020452 |
[7] |
Kanishka Perera, Marco Squassina. Bifurcation results for problems with fractional Trudinger-Moser nonlinearity. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 561-576. doi: 10.3934/dcdss.2018031 |
[8] |
Van Hoang Nguyen. The Hardy–Moser–Trudinger inequality via the transplantation of Green functions. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3559-3574. doi: 10.3934/cpaa.2020155 |
[9] |
Xumin Wang. Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2717-2733. doi: 10.3934/cpaa.2019121 |
[10] |
Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110 |
[11] |
Prosenjit Roy. On attainability of Moser-Trudinger inequality with logarithmic weights in higher dimensions. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5207-5222. doi: 10.3934/dcds.2019212 |
[12] |
Yamin Wang. On nonexistence of extremals for the Trudinger-Moser functionals involving $ L^p $ norms. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4257-4268. doi: 10.3934/cpaa.2020191 |
[13] |
Mengjie Zhang. Extremal functions for a class of trace Trudinger-Moser inequalities on a compact Riemann surface with smooth boundary. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1721-1735. doi: 10.3934/cpaa.2021038 |
[14] |
Sami Aouaoui, Rahma Jlel. Singular weighted sharp Trudinger-Moser inequalities defined on $ \mathbb{R}^N $ and applications to elliptic nonlinear equations. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 781-813. doi: 10.3934/dcds.2021137 |
[15] |
Changliang Zhou, Chunqin Zhou. On the anisotropic Moser-Trudinger inequality for unbounded domains in $ \mathbb R^{n} $. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 847-881. doi: 10.3934/dcds.2020064 |
[16] |
Guozhen Lu, Yunyan Yang. Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $L^p$ norm in two dimension. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 963-979. doi: 10.3934/dcds.2009.25.963 |
[17] |
Nguyen Lam. Equivalence of sharp Trudinger-Moser-Adams Inequalities. Communications on Pure and Applied Analysis, 2017, 16 (3) : 973-998. doi: 10.3934/cpaa.2017047 |
[18] |
Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437 |
[19] |
Zijia Peng, Cuiming Ma, Zhonghui Liu. Existence for a quasistatic variational-hemivariational inequality. Evolution Equations and Control Theory, 2020, 9 (4) : 1153-1165. doi: 10.3934/eect.2020058 |
[20] |
S. J. Li, Z. M. Fang. On the stability of a dual weak vector variational inequality problem. Journal of Industrial and Management Optimization, 2008, 4 (1) : 155-165. doi: 10.3934/jimo.2008.4.155 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]