May  2011, 30(2): 537-545. doi: 10.3934/dcds.2011.30.537

Nirenberg's contributions to complex analysis

1. 

Princeton University, Mathematics Department, Princeton, NJ 08544, United States

Received  September 2010 Published  February 2011

This article is concerned with the fundamental contributions of Louis Nirenberg to complex analysis and their impact on the theory of partial differential equations. We explain some of his main results and sketch the developments that they engendered.
Citation: Joseph J Kohn. Nirenberg's contributions to complex analysis. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 537-545. doi: 10.3934/dcds.2011.30.537
References:
[1]

T. Akahori, "A New Approach to the Local Embedding Theorem of CR-Structure for $n\ge4$,'', Memoirs of the A.M.S., (1987).   Google Scholar

[2]

S. Bell and E. Ligocka, A simplification and extension of Fefferman's theorem on biholomorphic mappings,, Invent. Math., 57 (1980), 283.  doi: 10.1007/BF01418930.  Google Scholar

[3]

J. Bokobza and A. Unterberger, Les operators de Calderón-Zygmund précisés,, C. R. Acad. Sci. Paris, 259 (1964), 1612.   Google Scholar

[4]

L. Caffarelli, J. J. Kohn, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, II: Complex Monge-Ampère, and uniformly elliptic equations,, Comm. Pure Appl. Math., 38 (1985), 209.  doi: 10.1002/cpa.3160380206.  Google Scholar

[5]

D. Catlin, Necessary conditions for subellipticity of the $\bar\partial$-Neumann problem,, Ann. of Math., 117 (1983), 147.  doi: 10.2307/2006974.  Google Scholar

[6]

D. Catlin, Subelliptic estimates for the $\bar\partial$-Neumann problem on pseudoconvex domains,, Ann. of Math., 126 (1987), 131.  doi: 10.2307/1971347.  Google Scholar

[7]

S. S. Chern, H. I. Levine and L. Nirenberg, Intrinsic norms on a complex manifold,, Global Anal., (1969), 119.   Google Scholar

[8]

S.-C. Chen and M.-C. Shaw, "Partial Differential Equations in Several Complex Variables,", AMS/IP Stud. Adv. Math. 19, (2001).   Google Scholar

[9]

J. P. D'Angelo, Finite type conditions for real hypersurfaces,, J. Diff. Geom., 14 (1979), 59.   Google Scholar

[10]

C. L. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains,, Invent. Math., 26 (1974), 1.  doi: 10.1007/BF01406845.  Google Scholar

[11]

G. Fichera, Sulle equazioni differenziali lineari ellitico-paraboliche del secondo ordine,, Atti Acc. Naz. Lincei Mem. Ser. 8, 5 (1956), 97.   Google Scholar

[12]

K. Kodaira, L. Nirenberg and D. C. Spencer, On the existence of deformations of complex analytic structures,, Ann. of Math., 68 (1958), 450.  doi: 10.2307/1970256.  Google Scholar

[13]

J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds I and II,, Ann. of Math. 78 (1963), 78 (1963), 112.   Google Scholar

[14]

J. J. Kohn, Boundary behavior of $\bar\partial$ on weakly pseudo-convex manifolds of dimension two,, J. Diff. Geom., 6 (1972), 523.   Google Scholar

[15]

J. J. Kohn and L. Nirenberg, Non-coercive boundary value problems,, Comm. Pure Appl. Math., 18 (1965), 443.  doi: 10.1002/cpa.3160180305.  Google Scholar

[16]

J. J. Kohn and L. Nirenberg, An algebra of pseudo-differential operators,, Comm. Pure Appl. Math., 18 (1965), 269.  doi: 10.1002/cpa.3160180121.  Google Scholar

[17]

J. J. Kohn and L. Nirenberg, Degenerate ellptic-parabolic equations of second order,, Comm. Pure Appl. Math., 20 (1967), 797.  doi: 10.1002/cpa.3160200410.  Google Scholar

[18]

J. J. Kohn and L. Nirenberg, A pseudo-convex domain not admitting a holomorphic support function,, Math. Ann., 201 (1973), 265.  doi: 10.1007/BF01428194.  Google Scholar

[19]

M. Kuranishi, Strongly psedoconvex CR structures over small balls, Part I, An a priori estimate, Part II, A regularity theorem, Part III, An embedding theorem,, Ann. of Math., 115 (1982), 451.   Google Scholar

[20]

P. D. Lax and L. Nirenberg, On stability for difference schemes: A sharp form of Gårding's inequality,, Comm. Pure Appl. Math., 19 (1966), 473.  doi: 10.1002/cpa.3160190409.  Google Scholar

[21]

C. B. Morrey, The analytic embedding of abstract real analytic manifolds,, Ann. of Math., 40 (1958), 62.   Google Scholar

[22]

A. Newlander and L. Nirenberg, Complex analytic coordinates in almost complex manifolds,, Ann. of Math., 65 (1957), 391.  doi: 10.2307/1970051.  Google Scholar

[23]

L. Nirenberg, "A Complex Frobenius Theorem,", Proc. Conf. Analytic Functions, 1 (1957), 172.   Google Scholar

[24]

L. Nirenberg, On a question of Hans Lewy,, Russian Math. Surveys, 29 (1974), 251.   Google Scholar

[25]

L. Nirenberg and D. C. Spencer, On rigidity of holomorphic imbeddings,, Contributions to function theory, (1960), 133.   Google Scholar

[26]

L. Nirenberg, S. Webster and P. Yang, Local boundary regularity of holomorphic mappings,, Comm Pure and Appl. Math., 33 (1980), 305.  doi: 10.1002/cpa.3160330306.  Google Scholar

[27]

O. A. Oleinik, A boundary value problem for linear elliptic parabolic equations,, Doklady Akad. Nauk. SSSR, 163 (1963), 577.   Google Scholar

[28]

E. J. Straube, "Lectures on the $\mathcal L^2$-Sobolev Theory of the $\bar\partial$-Neumann Problem,'', LSI Lectures in Mathematics and Physics, (2010).  doi: 10.4171/076.  Google Scholar

show all references

References:
[1]

T. Akahori, "A New Approach to the Local Embedding Theorem of CR-Structure for $n\ge4$,'', Memoirs of the A.M.S., (1987).   Google Scholar

[2]

S. Bell and E. Ligocka, A simplification and extension of Fefferman's theorem on biholomorphic mappings,, Invent. Math., 57 (1980), 283.  doi: 10.1007/BF01418930.  Google Scholar

[3]

J. Bokobza and A. Unterberger, Les operators de Calderón-Zygmund précisés,, C. R. Acad. Sci. Paris, 259 (1964), 1612.   Google Scholar

[4]

L. Caffarelli, J. J. Kohn, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, II: Complex Monge-Ampère, and uniformly elliptic equations,, Comm. Pure Appl. Math., 38 (1985), 209.  doi: 10.1002/cpa.3160380206.  Google Scholar

[5]

D. Catlin, Necessary conditions for subellipticity of the $\bar\partial$-Neumann problem,, Ann. of Math., 117 (1983), 147.  doi: 10.2307/2006974.  Google Scholar

[6]

D. Catlin, Subelliptic estimates for the $\bar\partial$-Neumann problem on pseudoconvex domains,, Ann. of Math., 126 (1987), 131.  doi: 10.2307/1971347.  Google Scholar

[7]

S. S. Chern, H. I. Levine and L. Nirenberg, Intrinsic norms on a complex manifold,, Global Anal., (1969), 119.   Google Scholar

[8]

S.-C. Chen and M.-C. Shaw, "Partial Differential Equations in Several Complex Variables,", AMS/IP Stud. Adv. Math. 19, (2001).   Google Scholar

[9]

J. P. D'Angelo, Finite type conditions for real hypersurfaces,, J. Diff. Geom., 14 (1979), 59.   Google Scholar

[10]

C. L. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains,, Invent. Math., 26 (1974), 1.  doi: 10.1007/BF01406845.  Google Scholar

[11]

G. Fichera, Sulle equazioni differenziali lineari ellitico-paraboliche del secondo ordine,, Atti Acc. Naz. Lincei Mem. Ser. 8, 5 (1956), 97.   Google Scholar

[12]

K. Kodaira, L. Nirenberg and D. C. Spencer, On the existence of deformations of complex analytic structures,, Ann. of Math., 68 (1958), 450.  doi: 10.2307/1970256.  Google Scholar

[13]

J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds I and II,, Ann. of Math. 78 (1963), 78 (1963), 112.   Google Scholar

[14]

J. J. Kohn, Boundary behavior of $\bar\partial$ on weakly pseudo-convex manifolds of dimension two,, J. Diff. Geom., 6 (1972), 523.   Google Scholar

[15]

J. J. Kohn and L. Nirenberg, Non-coercive boundary value problems,, Comm. Pure Appl. Math., 18 (1965), 443.  doi: 10.1002/cpa.3160180305.  Google Scholar

[16]

J. J. Kohn and L. Nirenberg, An algebra of pseudo-differential operators,, Comm. Pure Appl. Math., 18 (1965), 269.  doi: 10.1002/cpa.3160180121.  Google Scholar

[17]

J. J. Kohn and L. Nirenberg, Degenerate ellptic-parabolic equations of second order,, Comm. Pure Appl. Math., 20 (1967), 797.  doi: 10.1002/cpa.3160200410.  Google Scholar

[18]

J. J. Kohn and L. Nirenberg, A pseudo-convex domain not admitting a holomorphic support function,, Math. Ann., 201 (1973), 265.  doi: 10.1007/BF01428194.  Google Scholar

[19]

M. Kuranishi, Strongly psedoconvex CR structures over small balls, Part I, An a priori estimate, Part II, A regularity theorem, Part III, An embedding theorem,, Ann. of Math., 115 (1982), 451.   Google Scholar

[20]

P. D. Lax and L. Nirenberg, On stability for difference schemes: A sharp form of Gårding's inequality,, Comm. Pure Appl. Math., 19 (1966), 473.  doi: 10.1002/cpa.3160190409.  Google Scholar

[21]

C. B. Morrey, The analytic embedding of abstract real analytic manifolds,, Ann. of Math., 40 (1958), 62.   Google Scholar

[22]

A. Newlander and L. Nirenberg, Complex analytic coordinates in almost complex manifolds,, Ann. of Math., 65 (1957), 391.  doi: 10.2307/1970051.  Google Scholar

[23]

L. Nirenberg, "A Complex Frobenius Theorem,", Proc. Conf. Analytic Functions, 1 (1957), 172.   Google Scholar

[24]

L. Nirenberg, On a question of Hans Lewy,, Russian Math. Surveys, 29 (1974), 251.   Google Scholar

[25]

L. Nirenberg and D. C. Spencer, On rigidity of holomorphic imbeddings,, Contributions to function theory, (1960), 133.   Google Scholar

[26]

L. Nirenberg, S. Webster and P. Yang, Local boundary regularity of holomorphic mappings,, Comm Pure and Appl. Math., 33 (1980), 305.  doi: 10.1002/cpa.3160330306.  Google Scholar

[27]

O. A. Oleinik, A boundary value problem for linear elliptic parabolic equations,, Doklady Akad. Nauk. SSSR, 163 (1963), 577.   Google Scholar

[28]

E. J. Straube, "Lectures on the $\mathcal L^2$-Sobolev Theory of the $\bar\partial$-Neumann Problem,'', LSI Lectures in Mathematics and Physics, (2010).  doi: 10.4171/076.  Google Scholar

[1]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[2]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[3]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[4]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[5]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[6]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[7]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[8]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[9]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[10]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[11]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[12]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[13]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[14]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[15]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[16]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[17]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[18]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[19]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[20]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (77)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]