May  2011, 30(2): 547-558. doi: 10.3934/dcds.2011.30.547

Decay estimation for positive solutions of a $\gamma$-Laplace equation

1. 

School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210097

2. 

Department of Applied Mathematics, University of Colorado at Boulder

3. 

Department of Mathematics, University of Colorado at Boulder, Boulder, CO 80309

Received  June 2010 Published  February 2011

In this paper, we study the properties of the positive solutions of a $\gamma$-Laplace equation in $R^n$

-div$(|\nabla u|^{\gamma-2}\nabla u) =K u^p$,

Here $1<\gamma<2$, $n>\gamma$, $p=\frac{(\gamma-1)(n+\gamma)}{n-\gamma}$ and $K(x)$ is a smooth function bounded by two positive constants. First, the positive solution $u$ of the $\gamma$-Laplace equation above satisfies an integral equation involving a Wolff potential. Based on this, we estimate the decay rate of the positive solutions of the $\gamma$-Laplace equation at infinity. A new method is introduced to fully explore the integrability result established recently by Ma, Chen and Li on Wolff type integral equations to derive the decay estimate.

Citation: Yutian Lei, Congming Li, Chao Ma. Decay estimation for positive solutions of a $\gamma$-Laplace equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 547-558. doi: 10.3934/dcds.2011.30.547
References:
[1]

L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, Comm. Pure Appl. Math., 42 (1989), 271.  doi: 10.1002/cpa.3160420304.  Google Scholar

[2]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[3]

W. Chen and C. Li, A priori estimates for prescribing scalar curvature equations,, Ann. of Math., 145 (1997), 547.  doi: 10.2307/2951844.  Google Scholar

[4]

W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality,, Proc. Amer. Math. Soc., 136 (2008), 955.  doi: 10.1090/S0002-9939-07-09232-5.  Google Scholar

[5]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, preprint, (2009).   Google Scholar

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. in Partial Differential Equations, 30 (2005), 59.  doi: 10.1081/PDE-200044445.  Google Scholar

[7]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure and Appl. Math., 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[8]

C. Cascante, J. Ortega and I. Verbitsky, Wolff's inequality for radially nonincreasing kernels and applications to trace inequalities,, Potential Analysis, 16 (2002), 347.  doi: 10.1023/A:1014845728367.  Google Scholar

[9]

A. Chang and P. Yang, On uniqueness of an n-th order differential equation in conformal geometry,, Math. Res. Letters, 4 (1997), 91.   Google Scholar

[10]

S. Ding, On some imbedding theorems,, Sci. Sinica, 21 (1978), 287.   Google Scholar

[11]

L. Fraenkel, "An Introduction to Maximum Principles and Symmetry in Elliptic Problems,'', Cambridge Unversity Press, (2000).  doi: 10.1017/CBO9780511569203.  Google Scholar

[12]

M. Franca, Classification of positive solutions of p-Laplace equation with a growth term,, Archivum Mathematicum, 40 (2004), 415.   Google Scholar

[13]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$,, in, 7a (1981).   Google Scholar

[14]

L. I. Hedberg and T. Wolff, Thin sets in nonlinear potential theory,, Ann. Inst. Fourier (Grenobel), 33 (1983), 161.   Google Scholar

[15]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661.  doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[16]

C. Jin and C. Li, Qualitative analysis of some systems of integral equations,, Calc. Var. PDEs, 26 (2006), 447.   Google Scholar

[17]

T. Kilpelaiinen and J. Maly, Degenerate elliptic equations with measure data and nonlinear potentials,, Ann. Scuola Norm. Sup. Pisa, 19 (1992), 591.   Google Scholar

[18]

T. Kilpelaiinen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172 (1994), 137.  doi: 10.1007/BF02392793.  Google Scholar

[19]

C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations,, Invent. Math., 123 (1996), 221.   Google Scholar

[20]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Comm. Pure Appl. Anal., 6 (2007), 453.  doi: 10.3934/cpaa.2007.6.453.  Google Scholar

[21]

C. Li and L. Ma, Uniqueness of positive bound states to Schrodinger systems with critical exponents,, SIAM J. Math. Anal., 40 (2008), 1049.  doi: 10.1137/080712301.  Google Scholar

[22]

Y. Li, Remark on some conformally invariant integral equations: the method of moving planes,, Journal of European Mathematical Society, 6 (2004), 153.  doi: 10.4171/JEMS/6.  Google Scholar

[23]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349.  doi: 10.2307/2007032.  Google Scholar

[24]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, Advances in Mathematics, 226 (2011), 2676.  doi: 10.1016/j.aim.2010.07.020.  Google Scholar

[25]

J. Maly, Wolff potential estimates of superminimizers of Orlicz type Dirichlet integrals,, Manuscripta Math., 110 (2003), 513.  doi: 10.1007/s00229-003-0358-4.  Google Scholar

[26]

N. Phuc and I. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type,, Ann. of Math., 168 (2008), 859.  doi: 10.4007/annals.2008.168.859.  Google Scholar

[27]

J. Serrin, A symmetry problem in potential theory,, Arch. Rational Mech. Anal., 43 (1971), 304.  doi: 10.1007/BF00250468.  Google Scholar

[28]

J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities,, Acta Math., 189 (2002), 79.  doi: 10.1007/BF02392645.  Google Scholar

[29]

E. M. Stein and G. Weiss, Fractional integrals in $n$-dimensional Euclidean space,, J. Math. Mech., 7 (1958), 503.   Google Scholar

show all references

References:
[1]

L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, Comm. Pure Appl. Math., 42 (1989), 271.  doi: 10.1002/cpa.3160420304.  Google Scholar

[2]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[3]

W. Chen and C. Li, A priori estimates for prescribing scalar curvature equations,, Ann. of Math., 145 (1997), 547.  doi: 10.2307/2951844.  Google Scholar

[4]

W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality,, Proc. Amer. Math. Soc., 136 (2008), 955.  doi: 10.1090/S0002-9939-07-09232-5.  Google Scholar

[5]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, preprint, (2009).   Google Scholar

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. in Partial Differential Equations, 30 (2005), 59.  doi: 10.1081/PDE-200044445.  Google Scholar

[7]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure and Appl. Math., 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[8]

C. Cascante, J. Ortega and I. Verbitsky, Wolff's inequality for radially nonincreasing kernels and applications to trace inequalities,, Potential Analysis, 16 (2002), 347.  doi: 10.1023/A:1014845728367.  Google Scholar

[9]

A. Chang and P. Yang, On uniqueness of an n-th order differential equation in conformal geometry,, Math. Res. Letters, 4 (1997), 91.   Google Scholar

[10]

S. Ding, On some imbedding theorems,, Sci. Sinica, 21 (1978), 287.   Google Scholar

[11]

L. Fraenkel, "An Introduction to Maximum Principles and Symmetry in Elliptic Problems,'', Cambridge Unversity Press, (2000).  doi: 10.1017/CBO9780511569203.  Google Scholar

[12]

M. Franca, Classification of positive solutions of p-Laplace equation with a growth term,, Archivum Mathematicum, 40 (2004), 415.   Google Scholar

[13]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$,, in, 7a (1981).   Google Scholar

[14]

L. I. Hedberg and T. Wolff, Thin sets in nonlinear potential theory,, Ann. Inst. Fourier (Grenobel), 33 (1983), 161.   Google Scholar

[15]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661.  doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[16]

C. Jin and C. Li, Qualitative analysis of some systems of integral equations,, Calc. Var. PDEs, 26 (2006), 447.   Google Scholar

[17]

T. Kilpelaiinen and J. Maly, Degenerate elliptic equations with measure data and nonlinear potentials,, Ann. Scuola Norm. Sup. Pisa, 19 (1992), 591.   Google Scholar

[18]

T. Kilpelaiinen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172 (1994), 137.  doi: 10.1007/BF02392793.  Google Scholar

[19]

C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations,, Invent. Math., 123 (1996), 221.   Google Scholar

[20]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Comm. Pure Appl. Anal., 6 (2007), 453.  doi: 10.3934/cpaa.2007.6.453.  Google Scholar

[21]

C. Li and L. Ma, Uniqueness of positive bound states to Schrodinger systems with critical exponents,, SIAM J. Math. Anal., 40 (2008), 1049.  doi: 10.1137/080712301.  Google Scholar

[22]

Y. Li, Remark on some conformally invariant integral equations: the method of moving planes,, Journal of European Mathematical Society, 6 (2004), 153.  doi: 10.4171/JEMS/6.  Google Scholar

[23]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349.  doi: 10.2307/2007032.  Google Scholar

[24]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, Advances in Mathematics, 226 (2011), 2676.  doi: 10.1016/j.aim.2010.07.020.  Google Scholar

[25]

J. Maly, Wolff potential estimates of superminimizers of Orlicz type Dirichlet integrals,, Manuscripta Math., 110 (2003), 513.  doi: 10.1007/s00229-003-0358-4.  Google Scholar

[26]

N. Phuc and I. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type,, Ann. of Math., 168 (2008), 859.  doi: 10.4007/annals.2008.168.859.  Google Scholar

[27]

J. Serrin, A symmetry problem in potential theory,, Arch. Rational Mech. Anal., 43 (1971), 304.  doi: 10.1007/BF00250468.  Google Scholar

[28]

J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities,, Acta Math., 189 (2002), 79.  doi: 10.1007/BF02392645.  Google Scholar

[29]

E. M. Stein and G. Weiss, Fractional integrals in $n$-dimensional Euclidean space,, J. Math. Mech., 7 (1958), 503.   Google Scholar

[1]

Wu Chen, Zhongxue Lu. Existence and nonexistence of positive solutions to an integral system involving Wolff potential. Communications on Pure & Applied Analysis, 2016, 15 (2) : 385-398. doi: 10.3934/cpaa.2016.15.385

[2]

Huan Chen, Zhongxue Lü. The properties of positive solutions to an integral system involving Wolff potential. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1879-1904. doi: 10.3934/dcds.2014.34.1879

[3]

Xiaolong Han, Guozhen Lu. Regularity of solutions to an integral equation associated with Bessel potential. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1111-1119. doi: 10.3934/cpaa.2011.10.1111

[4]

Roman Chapko, B. Tomas Johansson. On the numerical solution of a Cauchy problem for the Laplace equation via a direct integral equation approach. Inverse Problems & Imaging, 2012, 6 (1) : 25-38. doi: 10.3934/ipi.2012.6.25

[5]

Roman Chapko, B. Tomas Johansson. An alternating boundary integral based method for a Cauchy problem for the Laplace equation in semi-infinite regions. Inverse Problems & Imaging, 2008, 2 (3) : 317-333. doi: 10.3934/ipi.2008.2.317

[6]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[7]

Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, Irena Lasiecka, Flávio A. Falcão Nascimento. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1987-2011. doi: 10.3934/dcdsb.2014.19.1987

[8]

Maya Bassam, Denis Mercier, Ali Wehbe. Optimal energy decay rate of Rayleigh beam equation with only one boundary control force. Evolution Equations & Control Theory, 2015, 4 (1) : 21-38. doi: 10.3934/eect.2015.4.21

[9]

Robert M. Strain, Keya Zhu. Large-time decay of the soft potential relativistic Boltzmann equation in $\mathbb{R}^3_x$. Kinetic & Related Models, 2012, 5 (2) : 383-415. doi: 10.3934/krm.2012.5.383

[10]

Chao Zhang, Xia Zhang, Shulin Zhou. Gradient estimates for the strong $p(x)$-Laplace equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4109-4129. doi: 10.3934/dcds.2017175

[11]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[12]

Wenxiong Chen, Congming Li, Biao Ou. Qualitative properties of solutions for an integral equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 347-354. doi: 10.3934/dcds.2005.12.347

[13]

Jialin Hong, Lijun Miao, Liying Zhang. Convergence analysis of a symplectic semi-discretization for stochastic nls equation with quadratic potential. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4295-4315. doi: 10.3934/dcdsb.2019120

[14]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[15]

Zifei Shen, Fashun Gao, Minbo Yang. On critical Choquard equation with potential well. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3567-3593. doi: 10.3934/dcds.2018151

[16]

Tomáš Bárta. Exact rate of decay for solutions to damped second order ODE's with a degenerate potential. Evolution Equations & Control Theory, 2018, 7 (4) : 531-543. doi: 10.3934/eect.2018025

[17]

Wenxiong Chen, Congming Li. Radial symmetry of solutions for some integral systems of Wolff type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1083-1093. doi: 10.3934/dcds.2011.30.1083

[18]

Yutian Lei. Wolff type potential estimates and application to nonlinear equations with negative exponents. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2067-2078. doi: 10.3934/dcds.2015.35.2067

[19]

Chunqing Lu. Asymptotic solutions of a nonlinear equation. Conference Publications, 2003, 2003 (Special) : 590-595. doi: 10.3934/proc.2003.2003.590

[20]

Samia Challal, Abdeslem Lyaghfouri. Hölder continuity of solutions to the $A$-Laplace equation involving measures. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1577-1583. doi: 10.3934/cpaa.2009.8.1577

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]