Citation: |
[1] |
J. Bourgain, "Global Solutions of Nonlinear Schrödinger Equations," AMS Publications, 1999. |
[2] |
H. Bahouri and J-Y. Chemin, On global well-posedness for defocusing cubic wave equation, Int. Math. Res. Not., 2006, Art. ID 54873, 12 pp. |
[3] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness result for KdV in Sobolev spaces of negative index, Elec. J. Diff. Eq., 2001 (2001), 1-7 (electronic). |
[4] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness for the Schrodinger equations with derivative, SIAM J. Math., 33 (2001), 649-669.doi: 10.1137/S0036141001384387. |
[5] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Almost conservation laws and global rough solutions to a nonlinear Schrodinger equation, Math. Res. Letters, 9 (2002), 659-682. |
[6] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, A refined global well-posedness for the Schrodinger equations with derivative, SIAM J. Math., 34 (2002), 64-86.doi: 10.1137/S0036141001394541. |
[7] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\R$ and $\T$, J. Amer. Math. Soc., 16 (2003), 705-749.doi: 10.1090/S0894-0347-03-00421-1. |
[8] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Multilinear estimates for periodic KdV equations and applications, J. Funct. Anal., 211 (2004), 173-218.doi: 10.1016/S0022-1236(03)00218-0. |
[9] |
J. Colliander, M. Keel, G. Staffilani, H. Takoka and T. Tao, Resonant decompositions and the I-method for cubic nonlinear Schrodinger on $\R^2$, Disc. Cont. Dynam. Systems A, 21 (2008), 665-686.doi: 10.3934/dcds.2008.21.665. |
[10] |
S. Cuccagna, On the local existence for the Maxwell Klein Gordon system in $\R^{3+1}$, Comm. Partial Differential Equations, 24 (1999), 851-867.doi: 10.1080/03605309908821449. |
[11] |
D. Eardley and V. Moncrief, The global existence of Yang-Mills-Higgs fields in $\R^{3+1}$, Comm. Math. Phys., 83 (1982), 171-212.doi: 10.1007/BF01976040. |
[12] |
D. Foschi and S. Klainerman, Bilinear space-time estimates for homogeneous wave equations, Les Annales Scientifiques de l'Ecole Normale Superieure, 33 (2000), 211-274.doi: 10.1016/S0012-9593(00)00109-9. |
[13] |
I. Gallagher and F. Planchon, On global solutions to a defocusing semi-linear wave equation, Revista Mat. Iberoamericana, 19 (2003), 161-177. |
[14] |
L. Kapitanski, Weak and yet weaker solutions of semilinear wave equations, Comm. Partial Differential Equations, 19 (1994), 1629-1676.doi: 10.1080/03605309408821067. |
[15] |
M. Keel and T. Tao, Endpoint strichartz estimates, Amer. Math. J., 120 (1998), 955-980.doi: 10.1353/ajm.1998.0039. |
[16] |
M. Keel and T. Tao, Local and global well-posedness of wave maps on $\R^{1+1}$ for rough data, Internat. Math. Res. Not., 21 (1998), 1117-1156.doi: 10.1155/S107379289800066X. |
[17] |
C. Kenig, G. Ponce and L. Vega, Global well-posedness for semi-linear wave equations, Comm. Partial Differential Equations, 25 (2000), 1741-1752.doi: 10.1080/03605300008821565. |
[18] |
S. Klainerman, On the regularity of classical field theories in Minkowski space-time $\R^{3+1}$, Prog. in Nonlin. Diff. Eq. and their Applic., Birkhäuser, 29 (1997), 113-150. |
[19] |
S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math., 46 (1993), 1221-1268.doi: 10.1002/cpa.3160460902. |
[20] |
S. Klainerman and M. Machedon, Finite energy solutions of the Yang-Mills equations in $\R^{3+1}$, Ann. of Math., 142 (1995), 39-119.doi: 10.2307/2118611. |
[21] |
S. Klainerman and M. Machedon, Smoothing estimates for null forms and applications, Duke Math J., 81 (1995), 99-103.doi: 10.1215/S0012-7094-95-08109-5. |
[22] |
S. Klainerman and M. Machedon, Remark on Strichartz-type inequalities, With appendices by Jean Bourgain and Daniel Tataru. Internat. Math. Res. Notices, 5 (1996), 201-220.doi: 10.1155/S1073792896000153. |
[23] |
S. Klainerman and M. Machedon, Estimates for null forms and the spaces $H_{s,\delta}$, Internat. Math. Res. Notices, 17 (1996), 853-865.doi: 10.1155/S1073792896000529. |
[24] |
S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J., 74 (1994), 19-44.doi: 10.1215/S0012-7094-94-07402-4. |
[25] |
S. Klainerman and M. Machedon, On the optimal local regularity for gauge field theories, Diff. and Integral Eq., 10 (1997), 1019-1030. |
[26] |
S. Klainerman and S. Selberg, Bilinear estimates and applications to nonlinear wave equations, Commun. Contemp. Math., 4 (2002), 223-295.doi: 10.1142/S0219199702000634. |
[27] |
S. Klainerman and D. Tataru, On the optimal regularity for Yang-Mills equations in $\R^{4+1}$, J. Amer. Math. Soc., 12 (1999), 93-116.doi: 10.1090/S0894-0347-99-00282-9. |
[28] |
S. Klainerman, I. Rodnianski and T. Tao, A physical approach to wave equation bilinear estimate, Dedicated to the memory of Thomas H. Wolff, J. Anal. Math., 87 (2002), 299-336doi: 10.1007/BF02868479. |
[29] |
H. Lindblad and C.D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., 130 (1995), 357-426.doi: 10.1006/jfan.1995.1075. |
[30] |
M. Machedon and J. Sterbenz, Almost optimal local well-posedness for the $(3+1)$-dimensional Maxwell-Klein-Gordon equations, J. Amer. Math. Soc., 17 (2004), 297-359.doi: 10.1090/S0894-0347-03-00445-4. |
[31] |
T. Roy, Adapted linear-nonlinear decomposition and global well-posedness for solutions to the defocusing cubic wave equation On $\R^{3}$, Discrete Contin. Dyn. Syst., 24 (2009), 1307-1323.doi: 10.3934/dcds.2009.24.1307. |
[32] |
T. Roy, Global well-posedness for the radial defocusing cubic wave equation and for rough data, Elec. J. Diff. Eq., 166 (2007), 1-22. |
[33] |
S. Selberg, "Multilinear Space-Time Estimates and Applications to Local Existence Theory for Nonlinear Wave Equations," Princeton University Thesis, 1999. |
[34] |
S. Selberg, Almost optimal local well-posedness of the Klein-Gordon-Maxwell system in 1+4 dimensions, Communications in PDE, 27 (2002), 1183-1227.doi: 10.1081/PDE-120004899. |
[35] |
E. M. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton University Press, 1970. |
[36] |
C. D. Sogge, "Lectures on Nonlinear Wave Equations," Monographs in Analysis II, International Press, 1995. |
[37] |
T. Tao, Multilinear weighted convolution of $L^2_x$ functions, and applications to nonlinear dispersive equations, Amer. J. Math., 123 (2001), 839-908.doi: 10.1353/ajm.2001.0035. |
[38] |
T. Tao, "Nonlinear Dispersive Equations: Local and Global Analysis," CBMS regional conference series in mathematics, 2006. |
[39] |
K. Uhlenbeck, Connections with $L^p$ bounds on curvature, Comm. Math. Phys., 83 (1982), 31-42.doi: 10.1007/BF01947069. |