August  2011, 30(3): 623-639. doi: 10.3934/dcds.2011.30.623

Discrete gradient fields on infinite complexes

1. 

Dpto. de Geometría y Topología, Universidad de Sevilla, 41080, Sevilla, Spain

2. 

Dpto. de Geometrĺa y Topologĺa, Universidad de Sevilla, 41080, Sevilla, Spain

3. 

The Faculty of Computer and Information Science, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia, Slovenia

Received  December 2009 Revised  November 2010 Published  March 2011

The aim of this work is to characterize the discrete gradient vector fields on infinite and locally finite simplicial complexes which are induced by a proper discrete Morse function. This characterization is essentially given by the non-existence of closed trajectories and the absence of a certain kind of incidence between monotonous rays in the given field.
Citation: Rafael Ayala, Jose Antonio Vilches, Gregor Jerše, Neža Mramor Kosta. Discrete gradient fields on infinite complexes. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 623-639. doi: 10.3934/dcds.2011.30.623
References:
[1]

R. Ayala, L. M. Fernández, D. Fernández-Ternero and J. A. Vilches, Discrete morse theory on graphs,, Topology and its Applications, 156 (2009), 3091.  doi: 10.1016/j.topol.2009.01.022.  Google Scholar

[2]

R. Ayala, L. M. Fernández and J. A. Vilches, Morse inequalities on certain infinite 2-complexes,, Glasgow Mathematical Journal, 49 (2007), 155.  doi: 10.1017/S0017089507003643.  Google Scholar

[3]

Anders Björner and Michelle L. Wachs, Shellable nonpure complexes and posets. II,, Trans. Amer. Math. Soc., 349 (1997), 3945.  doi: 10.1090/S0002-9947-97-01838-2.  Google Scholar

[4]

Manoj K. Chari, On discrete morse functions and combinatorial decompositions,, Discrete Mathematics, 217 (2000), 101.  doi: 10.1016/S0012-365X(99)00258-7.  Google Scholar

[5]

Robin Forman, Combinatorial vector fields and dynamical systems,, Mathematische Zeitschrift, 228 (1998), 629.  doi: 10.1007/PL00004638.  Google Scholar

[6]

Robin Forman, Morse theory for cell complexes,, Advances in Mathematics, 184 (1998), 90.  doi: 10.1006/aima.1997.1650.  Google Scholar

[7]

Etienne Gallais, Combinatorial realization of the thom-smale complex via discrete morse theory,, (2008), (2008).   Google Scholar

[8]

J. F. P. Hudson, "Piecewise Linear Topology,", University of Chicago, (1969).   Google Scholar

[9]

Gregor Jerse and Neza Mramor Kosta, Ascending and descending regions of a discrete morse function,, Computational Geometry, 42 (2009), 639.  doi: 10.1016/j.comgeo.2008.11.001.  Google Scholar

[10]

Jakob Jonsson, "Simplicial Complexes of Graphs,", Lecture Notes in Mathematics, (2008).  doi: 10.1007/978-3-540-75859-4.  Google Scholar

[11]

Michael Joswig and Marc E. Pfetsch, Computing optimal morse matchings,, SIAM Journal on Discrete Mathematics, 20 (2006), 11.  doi: 10.1137/S0895480104445885.  Google Scholar

[12]

Thomas Lewiner, Helio Lopes and Geovan Tavares, Visualizing forman's discrete vector field,, in, (2003), 95.   Google Scholar

[13]

John Milnor, "Morse Theory,", Princeton University Press, (1963).   Google Scholar

[14]

James R. Munkres, "Elements of Algebraic Topology,", Addison-Wesley Publishing Company, (1984).   Google Scholar

[15]

A. Quintero R. Ayala, L. M. Fernández and J. A. Vilches, A note on the pure Morse complex of a graph,, Topology Appl., 155 (2008), 2084.  doi: 10.1016/j.topol.2007.04.023.  Google Scholar

[16]

Stephen Smale, On dynamical systems,, Bol. Soc. Mat. Mexicana (2), 5 (1960), 195.   Google Scholar

[17]

M. van Gemmeren, Total absolute curvature and tightness of noncompact manifolds,, Transactions of the American Mathematical Society, 348 (1996), 2413.  doi: 10.1090/S0002-9947-96-01632-7.  Google Scholar

show all references

References:
[1]

R. Ayala, L. M. Fernández, D. Fernández-Ternero and J. A. Vilches, Discrete morse theory on graphs,, Topology and its Applications, 156 (2009), 3091.  doi: 10.1016/j.topol.2009.01.022.  Google Scholar

[2]

R. Ayala, L. M. Fernández and J. A. Vilches, Morse inequalities on certain infinite 2-complexes,, Glasgow Mathematical Journal, 49 (2007), 155.  doi: 10.1017/S0017089507003643.  Google Scholar

[3]

Anders Björner and Michelle L. Wachs, Shellable nonpure complexes and posets. II,, Trans. Amer. Math. Soc., 349 (1997), 3945.  doi: 10.1090/S0002-9947-97-01838-2.  Google Scholar

[4]

Manoj K. Chari, On discrete morse functions and combinatorial decompositions,, Discrete Mathematics, 217 (2000), 101.  doi: 10.1016/S0012-365X(99)00258-7.  Google Scholar

[5]

Robin Forman, Combinatorial vector fields and dynamical systems,, Mathematische Zeitschrift, 228 (1998), 629.  doi: 10.1007/PL00004638.  Google Scholar

[6]

Robin Forman, Morse theory for cell complexes,, Advances in Mathematics, 184 (1998), 90.  doi: 10.1006/aima.1997.1650.  Google Scholar

[7]

Etienne Gallais, Combinatorial realization of the thom-smale complex via discrete morse theory,, (2008), (2008).   Google Scholar

[8]

J. F. P. Hudson, "Piecewise Linear Topology,", University of Chicago, (1969).   Google Scholar

[9]

Gregor Jerse and Neza Mramor Kosta, Ascending and descending regions of a discrete morse function,, Computational Geometry, 42 (2009), 639.  doi: 10.1016/j.comgeo.2008.11.001.  Google Scholar

[10]

Jakob Jonsson, "Simplicial Complexes of Graphs,", Lecture Notes in Mathematics, (2008).  doi: 10.1007/978-3-540-75859-4.  Google Scholar

[11]

Michael Joswig and Marc E. Pfetsch, Computing optimal morse matchings,, SIAM Journal on Discrete Mathematics, 20 (2006), 11.  doi: 10.1137/S0895480104445885.  Google Scholar

[12]

Thomas Lewiner, Helio Lopes and Geovan Tavares, Visualizing forman's discrete vector field,, in, (2003), 95.   Google Scholar

[13]

John Milnor, "Morse Theory,", Princeton University Press, (1963).   Google Scholar

[14]

James R. Munkres, "Elements of Algebraic Topology,", Addison-Wesley Publishing Company, (1984).   Google Scholar

[15]

A. Quintero R. Ayala, L. M. Fernández and J. A. Vilches, A note on the pure Morse complex of a graph,, Topology Appl., 155 (2008), 2084.  doi: 10.1016/j.topol.2007.04.023.  Google Scholar

[16]

Stephen Smale, On dynamical systems,, Bol. Soc. Mat. Mexicana (2), 5 (1960), 195.   Google Scholar

[17]

M. van Gemmeren, Total absolute curvature and tightness of noncompact manifolds,, Transactions of the American Mathematical Society, 348 (1996), 2413.  doi: 10.1090/S0002-9947-96-01632-7.  Google Scholar

[1]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[2]

Robert I. McLachlan, G. R. W. Quispel. Discrete gradient methods have an energy conservation law. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1099-1104. doi: 10.3934/dcds.2014.34.1099

[3]

Sergey A. Denisov. Infinite superlinear growth of the gradient for the two-dimensional Euler equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 755-764. doi: 10.3934/dcds.2009.23.755

[4]

Matthias Erbar, Max Fathi, Vaios Laschos, André Schlichting. Gradient flow structure for McKean-Vlasov equations on discrete spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6799-6833. doi: 10.3934/dcds.2016096

[5]

Richard A. Norton, David I. McLaren, G. R. W. Quispel, Ari Stern, Antonella Zanna. Projection methods and discrete gradient methods for preserving first integrals of ODEs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2079-2098. doi: 10.3934/dcds.2015.35.2079

[6]

Richard A. Norton, G. R. W. Quispel. Discrete gradient methods for preserving a first integral of an ordinary differential equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1147-1170. doi: 10.3934/dcds.2014.34.1147

[7]

Delio Mugnolo, René Pröpper. Gradient systems on networks. Conference Publications, 2011, 2011 (Special) : 1078-1090. doi: 10.3934/proc.2011.2011.1078

[8]

Yuhong Dai, Ya-xiang Yuan. Analysis of monotone gradient methods. Journal of Industrial & Management Optimization, 2005, 1 (2) : 181-192. doi: 10.3934/jimo.2005.1.181

[9]

Karoline Disser, Matthias Liero. On gradient structures for Markov chains and the passage to Wasserstein gradient flows. Networks & Heterogeneous Media, 2015, 10 (2) : 233-253. doi: 10.3934/nhm.2015.10.233

[10]

Siniša Slijepčević. Extended gradient systems: Dimension one. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 503-518. doi: 10.3934/dcds.2000.6.503

[11]

Matthias Liero, Alexander Mielke, Mark A. Peletier, D. R. Michiel Renger. On microscopic origins of generalized gradient structures. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 1-35. doi: 10.3934/dcdss.2017001

[12]

Massimiliano Berti, M. Matzeu, Enrico Valdinoci. On periodic elliptic equations with gradient dependence. Communications on Pure & Applied Analysis, 2008, 7 (3) : 601-615. doi: 10.3934/cpaa.2008.7.601

[13]

Alain Haraux. Some applications of the Łojasiewicz gradient inequality. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2417-2427. doi: 10.3934/cpaa.2012.11.2417

[14]

Andrew E.B. Lim, John B. Moore. A path following algorithm for infinite quadratic programming on a Hilbert space. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 653-670. doi: 10.3934/dcds.1998.4.653

[15]

Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012

[16]

Timothy Blass, Rafael De La Llave, Enrico Valdinoci. A comparison principle for a Sobolev gradient semi-flow. Communications on Pure & Applied Analysis, 2011, 10 (1) : 69-91. doi: 10.3934/cpaa.2011.10.69

[17]

Jianjun Zhang, Yunyi Hu, James G. Nagy. A scaled gradient method for digital tomographic image reconstruction. Inverse Problems & Imaging, 2018, 12 (1) : 239-259. doi: 10.3934/ipi.2018010

[18]

Roberta Filippucci, Chiara Lini. Existence of solutions for quasilinear Dirichlet problems with gradient terms. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 267-286. doi: 10.3934/dcdss.2019019

[19]

Brian D. O. Anderson, Shaoshuai Mou, A. Stephen Morse, Uwe Helmke. Decentralized gradient algorithm for solution of a linear equation. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 319-328. doi: 10.3934/naco.2016014

[20]

J. K. Krottje. On the dynamics of a mixed parabolic-gradient system. Communications on Pure & Applied Analysis, 2003, 2 (4) : 521-537. doi: 10.3934/cpaa.2003.2.521

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (2)

[Back to Top]