Citation: |
[1] |
P. W. Bates, K. Lu and C. Zeng, Approximately invariant manifolds and global dynamics of spike states, Invent. Math., 174 (2008), 355-433.doi: 10.1007/s00222-008-0141-y. |
[2] |
M. J. Capiński, Covering relations and the existence of topologically normally hyperbolic invariant sets, Discrete Contin. Dyn. Syst. Ser A., 23 (2009), 705-725. |
[3] |
M. Chaperon, Stable manifolds and the Perron-Irwin method, Ergodic Theory Dynam. Systems, 24 (2004), 1359-1394.doi: 10.1017/S0143385703000701. |
[4] |
M. Gidea and P. Zgliczyński, Covering relations for multidimensional dynamical systems, J. of Diff. Equations, 202 (2004), 33-58. |
[5] |
A. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1261-1300.doi: 10.3934/dcdsb.2006.6.1261. |
[6] |
M. Hirsh, "Differential Topology," Graduate Texts in Mathematics, No. 33. Springer-Verlag, New York-Heidelberg, 1976. |
[7] |
M. Hirsh, C. Pugh and M. Shub, "Invariant Manifolds," Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977. |
[8] |
C. K. R. T. Jones, Geometric singular perturbation theory. Dynamical systems (Montecatini Terme, 1994), Lecture Notes in Math., 1609, Springer, Berlin, 1995, 44-118. |
[9] |
N. G. Lloyd, "Degree Theory," Cambridge Tracts in Math., No. 73, Cambridge Univ. Press, London, 1978. |
[10] |
Stephen Wiggins, "Normally Hyperbolic Invariant Manifolds in Dynamical Systems," Applied Mathematical Sciences, 105, Springer-Verlag, New York, 1994. pp x+193. |
[11] |
P. Zgliczyński, Covering relations, cone conditions and stable manifold theorem, J. Differential Equations, 246 (2009), 1774-1819. |