\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Persistent singular attractors arising from singular cycle under symmetric conditions

Abstract Related Papers Cited by
  • We prove that generic symmetric $C^{r}$-vector field families on $\mathbb{R}^{3}$ unfolding a contracting singular cycle, exhibits singular attractors for a positive lebesgue measure set of parameter values. Essentially the cycle is formed by a real contracting singularity, like those in the geometric contracting Lorenz attractor, whose unstable branches go to periodic orbits in the cycle. We obtain a lower estimate for the density of this set at the first bifurcation value. Furthermore, for parameter values in this set the corresponding vector field admits a unique SRB measure, whose support coincides with the attractor.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Benedicks and L. Carleson, On iterations of $\ 1-ax^{2}$ on $(-1,1)$, Annals of Math. (2), 122 (1985), 1-25.doi: 10.2307/1971367.

    [2]

    M. Benedicks and L. Carleson, The dynamics of the Hénon map, Annals of Math. (2), 133 (1991), 73-169.doi: 10.2307/2944326.

    [3]

    R. Bamón, R. Labarca, R. Ma né and M. J. Pacífico, The explosion of singular cycles, Publications Mathématiques, I. H. E. S., 78 (1993), 207-232.doi: 10.1007/BF02712919.

    [4]

    C. Bonatti, A. Pumariño and M. Viana, Lorenz attractors with arbitrary expanding dimension, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 883-888.doi: 10.1016/S0764-4442(97)80131-0.

    [5]

    J. Guckenheimer and A. Williams, Structural stability of Lorenz attractors, Publ. IHES, 50 (1979), 59-72.doi: 10.1007/BF02684769.

    [6]

    R. Labarca, Bifurcation of contracting singular cycles, Ann. Scient. Ec. Norm. Sup. 4e Série, 28 (1995), 705-745.

    [7]

    R. Labarca and M. J. Pacífico, Stability of singular horse-shoe, Topology, 25 (1986), 337-352.doi: 10.1016/0040-9383(86)90048-0.

    [8]

    W. de Melo and S. Van Strien, "One-Dimensional Dynamics," Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 25, Springer-Verlag, Berlin, (1993).

    [9]

    R. Metzger, Sinai-Ruelle-Bowen measures for contracting Lorenz maps and flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 247-276.doi: 10.1016/S0294-1449(00)00111-6.

    [10]

    C. Morales, M. J. Pacifico and B. San Martín, Expanding Lorenz attractors through resonant double homoclinic loops, SIAM J. Math. Anal., 36 (2005), 1836-1861 (electronic).doi: 10.1137/S0036141002415785.

    [11]

    C. Morales, M. J. Pacifico and B. San Martín, Contracting Lorenz attractors through resonant double homoclinic loops, SIAM J. Math. Anal., 38 (2006), 309-332 (electronic).doi: 10.1137/S0036141004443907.

    [12]

    E. Muñoz, B. San Martín and J. Vera, Nonhyperbolic persistent attractors near the Morse-Smale boundary, Ann. I. H. Poincar\'e-AN, 20 (2003), 867-888.

    [13]

    L. Mora and M. Viana, Abundance of strange attractors, Acta Math., 171 (1993), 1-71.doi: 10.1007/BF02392766.

    [14]

    M. J. Pacífico and A. Rovella, Unfolding contracting singular cycles, Ann. Scient. Éc. Norm. Sup, 4e. Série, 26 (1993), 691-700.

    [15]

    J. Palis, On Morse-Smale dynamical systems, Topology, 8 (1968), 385-404.doi: 10.1016/0040-9383(69)90024-X.

    [16]

    J. Palis and S. Smale, Structural stability theorems, Global Analysis, Proc. Symp. in Pure Math., Vol XIV, American Mathematical Society, (1970), 223-231.

    [17]

    J. Palis and F. Takens, "Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Fractal Dimensions and Infinitely Many Attractors," Cambridge Studies in Advanced Mathematics, 35, Cambridge University Press, Cambridge, 1993.

    [18]

    M. R. Rychlik, Lorenz attractors through Shilnikov-type bifurcation, Part I, Ergod. Th. & Dynam. Syst., 10 (1990), 793-821.doi: 10.1017/S0143385700005915.

    [19]

    A. Rovella, The dynamics of perturbations of the contracting Lorenz attractor, Bol. Soc. Bras. Mat., 24 (1993), 233-259.doi: 10.1007/BF01237679.

    [20]

    C. Robinson, Nonsymmetric Lorenz attractors from a homoclinic bifurcation, SIAM J. Math. Anal., 32 (2000), 119-141 (electronic).doi: 10.1137/S0036141098343598.

    [21]

    C. Robinson, Homoclinic bifurcation to a transitive attractor of Lorenz type II, SIAM J. Math. Anal., 23 (1992), 1255-1268.doi: 10.1137/0523070.

    [22]

    C. Robinson, Homoclinic bifurcation to a transitive attractor of Lorenz type, Nonliniarity, 2 (1989), 495-518.doi: 10.1088/0951-7715/2/4/001.

    [23]

    B. San Martín, Contracting singular cycles, Ann. Inst. Henri Poincaré, 15 (1998), 651-659.doi: 10.1016/S0294-1449(98)80004-8.

    [24]

    B. San Martín, Saddle-focus singular cycles y prevalence of hyperbolicity, Ann. Inst. Henri Poincaré, 15 (1998), 623-649.doi: 10.1016/S0294-1449(98)80003-6.

    [25]

    M. Shub, "Global Stability of Dynamical Systems," Springer-Verlag, New York, 1987.

    [26]

    M. Viana, "Stochastic Dynamics of Deterministic Systems," Lecture Notes XXI Braz. Math. Colloq., IMPA, Rio de Janeiro, 1997.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(92) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return