August  2011, 30(3): 671-685. doi: 10.3934/dcds.2011.30.671

Persistent singular attractors arising from singular cycle under symmetric conditions

1. 

Departamento de Matemáticas, Universidad Católica del Norte, Av. Angamos 0610, Casilla 1280, Antofagasta, Chile, Chile

2. 

The Boeing Company, P.O.Box 3707 MC OX-CC Seattle, WA 98124-2207, United States

Received  May 2010 Revised  November 2010 Published  March 2011

We prove that generic symmetric $C^{r}$-vector field families on $\mathbb{R}^{3}$ unfolding a contracting singular cycle, exhibits singular attractors for a positive lebesgue measure set of parameter values. Essentially the cycle is formed by a real contracting singularity, like those in the geometric contracting Lorenz attractor, whose unstable branches go to periodic orbits in the cycle. We obtain a lower estimate for the density of this set at the first bifurcation value. Furthermore, for parameter values in this set the corresponding vector field admits a unique SRB measure, whose support coincides with the attractor.
Citation: Mario E. Chávez-Gordillo, Bernardo San Martín, Jaime Vera. Persistent singular attractors arising from singular cycle under symmetric conditions. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 671-685. doi: 10.3934/dcds.2011.30.671
References:
[1]

M. Benedicks and L. Carleson, On iterations of $\ 1-ax^{2}$ on $(-1,1)$,, Annals of Math. (2), 122 (1985), 1.  doi: 10.2307/1971367.  Google Scholar

[2]

M. Benedicks and L. Carleson, The dynamics of the Hénon map,, Annals of Math. (2), 133 (1991), 73.  doi: 10.2307/2944326.  Google Scholar

[3]

R. Bamón, R. Labarca, R. Ma né and M. J. Pacífico, The explosion of singular cycles,, Publications Mathématiques, 78 (1993), 207.  doi: 10.1007/BF02712919.  Google Scholar

[4]

C. Bonatti, A. Pumariño and M. Viana, Lorenz attractors with arbitrary expanding dimension,, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 883.  doi: 10.1016/S0764-4442(97)80131-0.  Google Scholar

[5]

J. Guckenheimer and A. Williams, Structural stability of Lorenz attractors,, Publ. IHES, 50 (1979), 59.  doi: 10.1007/BF02684769.  Google Scholar

[6]

R. Labarca, Bifurcation of contracting singular cycles,, Ann. Scient. Ec. Norm. Sup. 4e Série, 28 (1995), 705.   Google Scholar

[7]

R. Labarca and M. J. Pacífico, Stability of singular horse-shoe,, Topology, 25 (1986), 337.  doi: 10.1016/0040-9383(86)90048-0.  Google Scholar

[8]

W. de Melo and S. Van Strien, "One-Dimensional Dynamics,", Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 25 (1993).   Google Scholar

[9]

R. Metzger, Sinai-Ruelle-Bowen measures for contracting Lorenz maps and flows,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 247.  doi: 10.1016/S0294-1449(00)00111-6.  Google Scholar

[10]

C. Morales, M. J. Pacifico and B. San Martín, Expanding Lorenz attractors through resonant double homoclinic loops,, SIAM J. Math. Anal., 36 (2005), 1836.  doi: 10.1137/S0036141002415785.  Google Scholar

[11]

C. Morales, M. J. Pacifico and B. San Martín, Contracting Lorenz attractors through resonant double homoclinic loops,, SIAM J. Math. Anal., 38 (2006), 309.  doi: 10.1137/S0036141004443907.  Google Scholar

[12]

E. Muñoz, B. San Martín and J. Vera, Nonhyperbolic persistent attractors near the Morse-Smale boundary,, Ann. I. H. Poincar\'e-AN, 20 (2003), 867.   Google Scholar

[13]

L. Mora and M. Viana, Abundance of strange attractors,, Acta Math., 171 (1993), 1.  doi: 10.1007/BF02392766.  Google Scholar

[14]

M. J. Pacífico and A. Rovella, Unfolding contracting singular cycles,, Ann. Scient. Éc. Norm. Sup, 26 (1993), 691.   Google Scholar

[15]

J. Palis, On Morse-Smale dynamical systems,, Topology, 8 (1968), 385.  doi: 10.1016/0040-9383(69)90024-X.  Google Scholar

[16]

J. Palis and S. Smale, Structural stability theorems,, Global Analysis, (1970), 223.   Google Scholar

[17]

J. Palis and F. Takens, "Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Fractal Dimensions and Infinitely Many Attractors,", Cambridge Studies in Advanced Mathematics, (1993).   Google Scholar

[18]

M. R. Rychlik, Lorenz attractors through Shilnikov-type bifurcation, Part I,, Ergod. Th. & Dynam. Syst., 10 (1990), 793.  doi: 10.1017/S0143385700005915.  Google Scholar

[19]

A. Rovella, The dynamics of perturbations of the contracting Lorenz attractor,, Bol. Soc. Bras. Mat., 24 (1993), 233.  doi: 10.1007/BF01237679.  Google Scholar

[20]

C. Robinson, Nonsymmetric Lorenz attractors from a homoclinic bifurcation,, SIAM J. Math. Anal., 32 (2000), 119.  doi: 10.1137/S0036141098343598.  Google Scholar

[21]

C. Robinson, Homoclinic bifurcation to a transitive attractor of Lorenz type II,, SIAM J. Math. Anal., 23 (1992), 1255.  doi: 10.1137/0523070.  Google Scholar

[22]

C. Robinson, Homoclinic bifurcation to a transitive attractor of Lorenz type,, Nonliniarity, 2 (1989), 495.  doi: 10.1088/0951-7715/2/4/001.  Google Scholar

[23]

B. San Martín, Contracting singular cycles,, Ann. Inst. Henri Poincaré, 15 (1998), 651.  doi: 10.1016/S0294-1449(98)80004-8.  Google Scholar

[24]

B. San Martín, Saddle-focus singular cycles y prevalence of hyperbolicity,, Ann. Inst. Henri Poincaré, 15 (1998), 623.  doi: 10.1016/S0294-1449(98)80003-6.  Google Scholar

[25]

M. Shub, "Global Stability of Dynamical Systems,", Springer-Verlag, (1987).   Google Scholar

[26]

M. Viana, "Stochastic Dynamics of Deterministic Systems,", Lecture Notes XXI Braz. Math. Colloq., (1997).   Google Scholar

show all references

References:
[1]

M. Benedicks and L. Carleson, On iterations of $\ 1-ax^{2}$ on $(-1,1)$,, Annals of Math. (2), 122 (1985), 1.  doi: 10.2307/1971367.  Google Scholar

[2]

M. Benedicks and L. Carleson, The dynamics of the Hénon map,, Annals of Math. (2), 133 (1991), 73.  doi: 10.2307/2944326.  Google Scholar

[3]

R. Bamón, R. Labarca, R. Ma né and M. J. Pacífico, The explosion of singular cycles,, Publications Mathématiques, 78 (1993), 207.  doi: 10.1007/BF02712919.  Google Scholar

[4]

C. Bonatti, A. Pumariño and M. Viana, Lorenz attractors with arbitrary expanding dimension,, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 883.  doi: 10.1016/S0764-4442(97)80131-0.  Google Scholar

[5]

J. Guckenheimer and A. Williams, Structural stability of Lorenz attractors,, Publ. IHES, 50 (1979), 59.  doi: 10.1007/BF02684769.  Google Scholar

[6]

R. Labarca, Bifurcation of contracting singular cycles,, Ann. Scient. Ec. Norm. Sup. 4e Série, 28 (1995), 705.   Google Scholar

[7]

R. Labarca and M. J. Pacífico, Stability of singular horse-shoe,, Topology, 25 (1986), 337.  doi: 10.1016/0040-9383(86)90048-0.  Google Scholar

[8]

W. de Melo and S. Van Strien, "One-Dimensional Dynamics,", Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 25 (1993).   Google Scholar

[9]

R. Metzger, Sinai-Ruelle-Bowen measures for contracting Lorenz maps and flows,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 247.  doi: 10.1016/S0294-1449(00)00111-6.  Google Scholar

[10]

C. Morales, M. J. Pacifico and B. San Martín, Expanding Lorenz attractors through resonant double homoclinic loops,, SIAM J. Math. Anal., 36 (2005), 1836.  doi: 10.1137/S0036141002415785.  Google Scholar

[11]

C. Morales, M. J. Pacifico and B. San Martín, Contracting Lorenz attractors through resonant double homoclinic loops,, SIAM J. Math. Anal., 38 (2006), 309.  doi: 10.1137/S0036141004443907.  Google Scholar

[12]

E. Muñoz, B. San Martín and J. Vera, Nonhyperbolic persistent attractors near the Morse-Smale boundary,, Ann. I. H. Poincar\'e-AN, 20 (2003), 867.   Google Scholar

[13]

L. Mora and M. Viana, Abundance of strange attractors,, Acta Math., 171 (1993), 1.  doi: 10.1007/BF02392766.  Google Scholar

[14]

M. J. Pacífico and A. Rovella, Unfolding contracting singular cycles,, Ann. Scient. Éc. Norm. Sup, 26 (1993), 691.   Google Scholar

[15]

J. Palis, On Morse-Smale dynamical systems,, Topology, 8 (1968), 385.  doi: 10.1016/0040-9383(69)90024-X.  Google Scholar

[16]

J. Palis and S. Smale, Structural stability theorems,, Global Analysis, (1970), 223.   Google Scholar

[17]

J. Palis and F. Takens, "Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Fractal Dimensions and Infinitely Many Attractors,", Cambridge Studies in Advanced Mathematics, (1993).   Google Scholar

[18]

M. R. Rychlik, Lorenz attractors through Shilnikov-type bifurcation, Part I,, Ergod. Th. & Dynam. Syst., 10 (1990), 793.  doi: 10.1017/S0143385700005915.  Google Scholar

[19]

A. Rovella, The dynamics of perturbations of the contracting Lorenz attractor,, Bol. Soc. Bras. Mat., 24 (1993), 233.  doi: 10.1007/BF01237679.  Google Scholar

[20]

C. Robinson, Nonsymmetric Lorenz attractors from a homoclinic bifurcation,, SIAM J. Math. Anal., 32 (2000), 119.  doi: 10.1137/S0036141098343598.  Google Scholar

[21]

C. Robinson, Homoclinic bifurcation to a transitive attractor of Lorenz type II,, SIAM J. Math. Anal., 23 (1992), 1255.  doi: 10.1137/0523070.  Google Scholar

[22]

C. Robinson, Homoclinic bifurcation to a transitive attractor of Lorenz type,, Nonliniarity, 2 (1989), 495.  doi: 10.1088/0951-7715/2/4/001.  Google Scholar

[23]

B. San Martín, Contracting singular cycles,, Ann. Inst. Henri Poincaré, 15 (1998), 651.  doi: 10.1016/S0294-1449(98)80004-8.  Google Scholar

[24]

B. San Martín, Saddle-focus singular cycles y prevalence of hyperbolicity,, Ann. Inst. Henri Poincaré, 15 (1998), 623.  doi: 10.1016/S0294-1449(98)80003-6.  Google Scholar

[25]

M. Shub, "Global Stability of Dynamical Systems,", Springer-Verlag, (1987).   Google Scholar

[26]

M. Viana, "Stochastic Dynamics of Deterministic Systems,", Lecture Notes XXI Braz. Math. Colloq., (1997).   Google Scholar

[1]

Aubin Arroyo, Enrique R. Pujals. Dynamical properties of singular-hyperbolic attractors. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 67-87. doi: 10.3934/dcds.2007.19.67

[2]

Xiao-Song Yang. Index sums of isolated singular points of positive vector fields. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 1033-1039. doi: 10.3934/dcds.2009.25.1033

[3]

Chiun-Chuan Chen, Chang-Shou Lin. Mean field equations of Liouville type with singular data: Sharper estimates. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1237-1272. doi: 10.3934/dcds.2010.28.1237

[4]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a phase field system with a possibly singular potential. Mathematical Control & Related Fields, 2016, 6 (1) : 95-112. doi: 10.3934/mcrf.2016.6.95

[5]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a conserved phase field system with a possibly singular potential. Evolution Equations & Control Theory, 2018, 7 (1) : 95-116. doi: 10.3934/eect.2018006

[6]

Mark I. Vishik, Sergey Zelik. Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2059-2093. doi: 10.3934/cpaa.2014.13.2059

[7]

Sergey Gonchenko, Ivan Ovsyannikov. Homoclinic tangencies to resonant saddles and discrete Lorenz attractors. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 273-288. doi: 10.3934/dcdss.2017013

[8]

Isaac A. García, Jaume Giné, Susanna Maza. Linearization of smooth planar vector fields around singular points via commuting flows. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1415-1428. doi: 10.3934/cpaa.2008.7.1415

[9]

Michele Colturato. Well-posedness and longtime behavior for a singular phase field system with perturbed phase dynamics. Evolution Equations & Control Theory, 2018, 7 (2) : 217-245. doi: 10.3934/eect.2018011

[10]

Elena Bonetti, Elisabetta Rocca. Global existence and long-time behaviour for a singular integro-differential phase-field system. Communications on Pure & Applied Analysis, 2007, 6 (2) : 367-387. doi: 10.3934/cpaa.2007.6.367

[11]

Monica Conti, Stefania Gatti, Alain Miranville. A singular cahn-hilliard-oono phase-field system with hereditary memory. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3033-3054. doi: 10.3934/dcds.2018132

[12]

Maurizio Grasselli, Alain Miranville, Giulio Schimperna. The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 67-98. doi: 10.3934/dcds.2010.28.67

[13]

Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control & Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018

[14]

Seung-Yeal Ha, Jeongho Kim, Peter Pickl, Xiongtao Zhang. A probabilistic approach for the mean-field limit to the Cucker-Smale model with a singular communication. Kinetic & Related Models, 2019, 12 (5) : 1045-1067. doi: 10.3934/krm.2019039

[15]

Cristina Lizana, Leonardo Mora. Lower bounds for the Hausdorff dimension of the geometric Lorenz attractor: The homoclinic case. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 699-709. doi: 10.3934/dcds.2008.22.699

[16]

William Ott, Qiudong Wang. Periodic attractors versus nonuniform expansion in singular limits of families of rank one maps. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 1035-1054. doi: 10.3934/dcds.2010.26.1035

[17]

Franz W. Kamber and Peter W. Michor. The flow completion of a manifold with vector field. Electronic Research Announcements, 2000, 6: 95-97.

[18]

Youngna Choi. Attractors from one dimensional Lorenz-like maps. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 715-730. doi: 10.3934/dcds.2004.11.715

[19]

Abdelghafour Atlas. Regularity of the attractor for symmetric regularized wave equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 695-704. doi: 10.3934/cpaa.2005.4.695

[20]

Peter W. Bates, Ji Li, Mingji Zhang. Singular fold with real noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2091-2107. doi: 10.3934/dcdsb.2016038

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

[Back to Top]