August  2011, 30(3): 687-697. doi: 10.3934/dcds.2011.30.687

On smooth conjugacy of expanding maps in higher dimensions

1. 

Département de Mathématiques, Université de Cergy-Pontoise, avenue Adolphe Chauvin, 95302, Cergy-Pontoise Cedex

Received  May 2010 Revised  November 2010 Published  March 2011

In this paper we investigate smooth conjugacy of $C^\infty$ expanding maps on certain nilmanifolds. We show that several rigidity results about expanding maps on the circle can not be generalized directly to higher dimensions. For example the following result is obtained: Let $\Gamma_1\backslash N_1$ and $\Gamma_2\backslash N_2$ be two nilmanifolds of homogeneous type. We show that for any positive integer $k$ there exist on the product nilmanifold $\Gamma_1\times \Gamma_2\backslash N_1\times N_2$ a $C^\infty$ expanding map $\varphi$ and an expanding nilendomorphism $\psi$ which are $C^k$ conjugate, but not $C^{k,lip}$ conjugate. While in the case of dimension one, it was shown by M. Shub and D. Sullivan that if two $C^\infty$ expanding maps on $\mathbb S^1$ are absolutely continuously conjugate, then they must be $C^\infty$ conjugate.
Citation: Yong Fang. On smooth conjugacy of expanding maps in higher dimensions. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 687-697. doi: 10.3934/dcds.2011.30.687
References:
[1]

K. Dekimpe and K. B. Lee, Expanding maps on infra-nilmanifolds of homogeneous type,, Trans. Amer. Math. Soc., 355 (2003), 1067.  doi: 10.1090/S0002-9947-02-03084-2.  Google Scholar

[2]

R. Feres, Hyperbolic dynamical systems, invariant geometric structures, and rigidity,, Math. Res. Lett., 1 (1994), 11.   Google Scholar

[3]

R. Feres, The invariant connection of a 1/2-pinched Anosov diffeomorphism and rigidity,, Pacific J. Math., 171 (1995), 139.   Google Scholar

[4]

M. Gromov, Groups of polynomial growth and expanding maps,, Inst. Hautes Etudes Sci. Publ. Math., 53 (1981), 53.  doi: 10.1007/BF02698687.  Google Scholar

[5]

P. Hall, "Nilpotent Groups,", Queen Mary College Maths. Notes, (1969).   Google Scholar

[6]

K. B. Lee and F. Raymond, Rigidity of almost crystallographic groups,, Contemporary Math. A. M. S., 44 (1985), 73.   Google Scholar

[7]

R. de la Llave, Smooth conjugacy and S-R-B measures for uniformly and non-uniformly hyperbolic systems,, Commun. Math. Phys., 150 (1992), 289.  doi: 10.1007/BF02096662.  Google Scholar

[8]

M. Misiurewicz, On expanding maps of compact manifolds and local homeomorphisms of a circle,, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 18 (1970), 725.   Google Scholar

[9]

R. Sacksteder, The measures invariant under an expanding map,, Géométrie différentielle, 392 (1974), 179.   Google Scholar

[10]

M. Shub, Endomorphisms of compact differentiable manifolds,, Amer. J. Math., 91 (1969), 175.  doi: 10.2307/2373276.  Google Scholar

[11]

M. Shub and D. Sullivan, Expanding endomorphisms of the circle revisited,, Ergodic Theory Dynam. Systems, 5 (1985), 285.  doi: 10.1017/S014338570000290X.  Google Scholar

show all references

References:
[1]

K. Dekimpe and K. B. Lee, Expanding maps on infra-nilmanifolds of homogeneous type,, Trans. Amer. Math. Soc., 355 (2003), 1067.  doi: 10.1090/S0002-9947-02-03084-2.  Google Scholar

[2]

R. Feres, Hyperbolic dynamical systems, invariant geometric structures, and rigidity,, Math. Res. Lett., 1 (1994), 11.   Google Scholar

[3]

R. Feres, The invariant connection of a 1/2-pinched Anosov diffeomorphism and rigidity,, Pacific J. Math., 171 (1995), 139.   Google Scholar

[4]

M. Gromov, Groups of polynomial growth and expanding maps,, Inst. Hautes Etudes Sci. Publ. Math., 53 (1981), 53.  doi: 10.1007/BF02698687.  Google Scholar

[5]

P. Hall, "Nilpotent Groups,", Queen Mary College Maths. Notes, (1969).   Google Scholar

[6]

K. B. Lee and F. Raymond, Rigidity of almost crystallographic groups,, Contemporary Math. A. M. S., 44 (1985), 73.   Google Scholar

[7]

R. de la Llave, Smooth conjugacy and S-R-B measures for uniformly and non-uniformly hyperbolic systems,, Commun. Math. Phys., 150 (1992), 289.  doi: 10.1007/BF02096662.  Google Scholar

[8]

M. Misiurewicz, On expanding maps of compact manifolds and local homeomorphisms of a circle,, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 18 (1970), 725.   Google Scholar

[9]

R. Sacksteder, The measures invariant under an expanding map,, Géométrie différentielle, 392 (1974), 179.   Google Scholar

[10]

M. Shub, Endomorphisms of compact differentiable manifolds,, Amer. J. Math., 91 (1969), 175.  doi: 10.2307/2373276.  Google Scholar

[11]

M. Shub and D. Sullivan, Expanding endomorphisms of the circle revisited,, Ergodic Theory Dynam. Systems, 5 (1985), 285.  doi: 10.1017/S014338570000290X.  Google Scholar

[1]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[2]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[3]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[4]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[5]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]