-
Previous Article
Equilibrium states of the pressure function for products of matrices
- DCDS Home
- This Issue
-
Next Article
Persistent singular attractors arising from singular cycle under symmetric conditions
On smooth conjugacy of expanding maps in higher dimensions
1. | Département de Mathématiques, Université de Cergy-Pontoise, avenue Adolphe Chauvin, 95302, Cergy-Pontoise Cedex |
References:
[1] |
K. Dekimpe and K. B. Lee, Expanding maps on infra-nilmanifolds of homogeneous type, Trans. Amer. Math. Soc., 355 (2003), 1067-1077.
doi: 10.1090/S0002-9947-02-03084-2. |
[2] |
R. Feres, Hyperbolic dynamical systems, invariant geometric structures, and rigidity, Math. Res. Lett., 1 (1994), 11-26. |
[3] |
R. Feres, The invariant connection of a 1/2-pinched Anosov diffeomorphism and rigidity, Pacific J. Math., 171 (1995), 139-155. |
[4] |
M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Etudes Sci. Publ. Math., 53 (1981), 53-73.
doi: 10.1007/BF02698687. |
[5] |
P. Hall, "Nilpotent Groups," Queen Mary College Maths. Notes, London, 1969. |
[6] |
K. B. Lee and F. Raymond, Rigidity of almost crystallographic groups, Contemporary Math. A. M. S., 44 (1985), 73-78. |
[7] |
R. de la Llave, Smooth conjugacy and S-R-B measures for uniformly and non-uniformly hyperbolic systems, Commun. Math. Phys., 150 (1992), 289-320.
doi: 10.1007/BF02096662. |
[8] |
M. Misiurewicz, On expanding maps of compact manifolds and local homeomorphisms of a circle, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 18 (1970), 725-732. |
[9] |
R. Sacksteder, The measures invariant under an expanding map, Géométrie différentielle, Springer Lecture notes in Math., 392 (1974), 179-194. |
[10] |
M. Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math., 91 (1969), 175-199.
doi: 10.2307/2373276. |
[11] |
M. Shub and D. Sullivan, Expanding endomorphisms of the circle revisited, Ergodic Theory Dynam. Systems, 5 (1985), 285-289.
doi: 10.1017/S014338570000290X. |
show all references
References:
[1] |
K. Dekimpe and K. B. Lee, Expanding maps on infra-nilmanifolds of homogeneous type, Trans. Amer. Math. Soc., 355 (2003), 1067-1077.
doi: 10.1090/S0002-9947-02-03084-2. |
[2] |
R. Feres, Hyperbolic dynamical systems, invariant geometric structures, and rigidity, Math. Res. Lett., 1 (1994), 11-26. |
[3] |
R. Feres, The invariant connection of a 1/2-pinched Anosov diffeomorphism and rigidity, Pacific J. Math., 171 (1995), 139-155. |
[4] |
M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Etudes Sci. Publ. Math., 53 (1981), 53-73.
doi: 10.1007/BF02698687. |
[5] |
P. Hall, "Nilpotent Groups," Queen Mary College Maths. Notes, London, 1969. |
[6] |
K. B. Lee and F. Raymond, Rigidity of almost crystallographic groups, Contemporary Math. A. M. S., 44 (1985), 73-78. |
[7] |
R. de la Llave, Smooth conjugacy and S-R-B measures for uniformly and non-uniformly hyperbolic systems, Commun. Math. Phys., 150 (1992), 289-320.
doi: 10.1007/BF02096662. |
[8] |
M. Misiurewicz, On expanding maps of compact manifolds and local homeomorphisms of a circle, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 18 (1970), 725-732. |
[9] |
R. Sacksteder, The measures invariant under an expanding map, Géométrie différentielle, Springer Lecture notes in Math., 392 (1974), 179-194. |
[10] |
M. Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math., 91 (1969), 175-199.
doi: 10.2307/2373276. |
[11] |
M. Shub and D. Sullivan, Expanding endomorphisms of the circle revisited, Ergodic Theory Dynam. Systems, 5 (1985), 285-289.
doi: 10.1017/S014338570000290X. |
[1] |
James P. Kelly, Kevin McGoff. Entropy conjugacy for Markov multi-maps of the interval. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2071-2094. doi: 10.3934/dcds.2020353 |
[2] |
Dyi-Shing Ou, Kenneth James Palmer. A constructive proof of the existence of a semi-conjugacy for a one dimensional map. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 977-992. doi: 10.3934/dcdsb.2012.17.977 |
[3] |
Christian Wolf. A shift map with a discontinuous entropy function. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012 |
[4] |
Andrey Gogolev. Smooth conjugacy of Anosov diffeomorphisms on higher-dimensional tori. Journal of Modern Dynamics, 2008, 2 (4) : 645-700. doi: 10.3934/jmd.2008.2.645 |
[5] |
Viviane Baladi, Daniel Smania. Smooth deformations of piecewise expanding unimodal maps. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 685-703. doi: 10.3934/dcds.2009.23.685 |
[6] |
Ralf Spatzier, Lei Yang. Exponential mixing and smooth classification of commuting expanding maps. Journal of Modern Dynamics, 2017, 11: 263-312. doi: 10.3934/jmd.2017012 |
[7] |
Rafael De La Llave, Michael Shub, Carles Simó. Entropy estimates for a family of expanding maps of the circle. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 597-608. doi: 10.3934/dcdsb.2008.10.597 |
[8] |
Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325 |
[9] |
Hun Ki Baek, Younghae Do. Dangerous Border-Collision bifurcations of a piecewise-smooth map. Communications on Pure and Applied Analysis, 2006, 5 (3) : 493-503. doi: 10.3934/cpaa.2006.5.493 |
[10] |
Boris Kruglikov, Martin Rypdal. A piece-wise affine contracting map with positive entropy. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 393-394. doi: 10.3934/dcds.2006.16.393 |
[11] |
David Burguet. Examples of $\mathcal{C}^r$ interval map with large symbolic extension entropy. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 873-899. doi: 10.3934/dcds.2010.26.873 |
[12] |
Gang Xu, Huicheng Yin. On global smooth solutions of 3-D compressible Euler equations with vanishing density in infinitely expanding balls. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2213-2265. doi: 10.3934/dcds.2020112 |
[13] |
Xueting Tian, Paulo Varandas. Topological entropy of level sets of empirical measures for non-uniformly expanding maps. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5407-5431. doi: 10.3934/dcds.2017235 |
[14] |
Prof. Dr.rer.nat Widodo. Topological entropy of shift function on the sequences space induced by expanding piecewise linear transformations. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 191-208. doi: 10.3934/dcds.2002.8.191 |
[15] |
Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295 |
[16] |
Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045 |
[17] |
A. Yu. Ol'shanskii and M. V. Sapir. The conjugacy problem for groups, and Higman embeddings. Electronic Research Announcements, 2003, 9: 40-50. |
[18] |
Solange Mancini, Miriam Manoel, Marco Antonio Teixeira. Divergent diagrams of folds and simultaneous conjugacy of involutions. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 657-674. doi: 10.3934/dcds.2005.12.657 |
[19] |
Kingshook Biswas. Complete conjugacy invariants of nonlinearizable holomorphic dynamics. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 847-856. doi: 10.3934/dcds.2010.26.847 |
[20] |
Adriano Da Silva, Alexandre J. Santana, Simão N. Stelmastchuk. Topological conjugacy of linear systems on Lie groups. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3411-3421. doi: 10.3934/dcds.2017144 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]