August  2011, 30(3): 709-735. doi: 10.3934/dcds.2011.30.709

Existence of nonstationary periodic solutions for $\Gamma$-symmetric Lotka-Volterra type systems

1. 

Department of Mathematics, Yokohama National University, Tokiwadai, Hodogayaku, Yokohama, Japan

2. 

Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX 75080, United States

3. 

Department of Mathematics, Universität Hamburg, 20146 Hamburg, Germany

Received  February 2010 Revised  October 2010 Published  March 2011

In this paper we present a general framework for applications of the twisted equivariant degree (with one free parameter) to an autonomous $\Gamma$-symmetric system of functional differential equations in order to detect and classify (according to their symmetric properties) its periodic solutions. As an example we establish the existence of multiple non-constant periodic solutions of delay Lotka-Volterra equations with $\Gamma$-symmetries. We also include some computational examples for several finite groups $\Gamma$.
Citation: Norimichi Hirano, Wieslaw Krawcewicz, Haibo Ruan. Existence of nonstationary periodic solutions for $\Gamma$-symmetric Lotka-Volterra type systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 709-735. doi: 10.3934/dcds.2011.30.709
References:
[1]

Z. Balanov, M. Farzamirad and W. Krawcewicz, Symmetric systems of van der Pol equations,, Topol. Methods Nonlinear Anal., 27 (2006), 29.   Google Scholar

[2]

Z. Balanov, W. Krawcewicz and H. Steinlein, "Applied Equivariant Degree,", AIMS Series on Differential Equations & Dynamical Systems, 1 (2006).   Google Scholar

[3]

T. Bartsch, "Topological Methods for Variational Problems with Symmetries,", Lecture Notes in Math., 1560 (1993).   Google Scholar

[4]

N. Hirano and S. Rybicki, Existence of limit cycles for coupled van der Pol equations,, J. Differential Equations, 195 (2003), 194.  doi: 10.1016/S0022-0396(03)00212-2.  Google Scholar

[5]

N. Hirano and S. Rybicki, Existence of periodic solutions for the Lotka-Volterra type systems,, Nonlinear Aanalysis TMA, (2006).   Google Scholar

[6]

G. Dylawerski, K. Gęba, J. Jodel and W. Marzantowicz, An $S^1$-equivariant degree and the Fuller index,, Ann. Polon. Math., 52 (1991), 243.   Google Scholar

[7]

K. Gęba, Degree for gradient equivariant maps and equivariant Conley index,, in, 27 (1997), 247.   Google Scholar

[8]

M. Golubitsky, I. N. Stewart and D. G. Schaeffer, "Singularities and Groups in Bifurcation Theory Vol II,", Applied Mathematical Sciences, 69 (1988).   Google Scholar

[9]

K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics,", Kluwer Academic Publishers, (1992).   Google Scholar

[10]

J. Hofbauer and K. Sigmund, "The Theory of Evolution and Dynamical Systems,", London Mathematical Society Student Texts, 7 (1988).   Google Scholar

[11]

K. P. Hadeler and G. Bocharov, Where to put delays in population models, in particular in the neutral case,, Canadian Applied Mathematics Quarterly, 11 (2003).   Google Scholar

[12]

G. E. Hutchinson, "An Introduction to Population Ecology,", Yale University Press, (1978).   Google Scholar

[13]

J. Ize and A. Vignoli, "Equivariant Degree Theory,", de Gruyter Series in Nonlinear Analysis and Applications, 8 (2003).   Google Scholar

[14]

R. Levins, "Evolution in Communities Near Equilibrium,", in, (1975).   Google Scholar

[15]

A. Biglands, Mapl$e^{TM}$ Library Package for the computations of the equivariant degree,, available at \url{http://krawcewicz.net/degree}., ().   Google Scholar

show all references

References:
[1]

Z. Balanov, M. Farzamirad and W. Krawcewicz, Symmetric systems of van der Pol equations,, Topol. Methods Nonlinear Anal., 27 (2006), 29.   Google Scholar

[2]

Z. Balanov, W. Krawcewicz and H. Steinlein, "Applied Equivariant Degree,", AIMS Series on Differential Equations & Dynamical Systems, 1 (2006).   Google Scholar

[3]

T. Bartsch, "Topological Methods for Variational Problems with Symmetries,", Lecture Notes in Math., 1560 (1993).   Google Scholar

[4]

N. Hirano and S. Rybicki, Existence of limit cycles for coupled van der Pol equations,, J. Differential Equations, 195 (2003), 194.  doi: 10.1016/S0022-0396(03)00212-2.  Google Scholar

[5]

N. Hirano and S. Rybicki, Existence of periodic solutions for the Lotka-Volterra type systems,, Nonlinear Aanalysis TMA, (2006).   Google Scholar

[6]

G. Dylawerski, K. Gęba, J. Jodel and W. Marzantowicz, An $S^1$-equivariant degree and the Fuller index,, Ann. Polon. Math., 52 (1991), 243.   Google Scholar

[7]

K. Gęba, Degree for gradient equivariant maps and equivariant Conley index,, in, 27 (1997), 247.   Google Scholar

[8]

M. Golubitsky, I. N. Stewart and D. G. Schaeffer, "Singularities and Groups in Bifurcation Theory Vol II,", Applied Mathematical Sciences, 69 (1988).   Google Scholar

[9]

K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics,", Kluwer Academic Publishers, (1992).   Google Scholar

[10]

J. Hofbauer and K. Sigmund, "The Theory of Evolution and Dynamical Systems,", London Mathematical Society Student Texts, 7 (1988).   Google Scholar

[11]

K. P. Hadeler and G. Bocharov, Where to put delays in population models, in particular in the neutral case,, Canadian Applied Mathematics Quarterly, 11 (2003).   Google Scholar

[12]

G. E. Hutchinson, "An Introduction to Population Ecology,", Yale University Press, (1978).   Google Scholar

[13]

J. Ize and A. Vignoli, "Equivariant Degree Theory,", de Gruyter Series in Nonlinear Analysis and Applications, 8 (2003).   Google Scholar

[14]

R. Levins, "Evolution in Communities Near Equilibrium,", in, (1975).   Google Scholar

[15]

A. Biglands, Mapl$e^{TM}$ Library Package for the computations of the equivariant degree,, available at \url{http://krawcewicz.net/degree}., ().   Google Scholar

[1]

Zalman Balanov, Meymanat Farzamirad, Wieslaw Krawcewicz, Haibo Ruan. Applied equivariant degree. part II: Symmetric Hopf bifurcations of functional differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 923-960. doi: 10.3934/dcds.2006.16.923

[2]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[3]

Pietro-Luciano Buono, V.G. LeBlanc. Equivariant versal unfoldings for linear retarded functional differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 283-302. doi: 10.3934/dcds.2005.12.283

[4]

Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure & Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291

[5]

Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005

[6]

Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166

[7]

Sylvia Novo, Carmen Núñez, Rafael Obaya, Ana M. Sanz. Skew-product semiflows for non-autonomous partial functional differential equations with delay. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4291-4321. doi: 10.3934/dcds.2014.34.4291

[8]

Rafael Obaya, Ana M. Sanz. Persistence in non-autonomous quasimonotone parabolic partial functional differential equations with delay. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3947-3970. doi: 10.3934/dcdsb.2018338

[9]

Anna Go??biewska, S?awomir Rybicki. Equivariant Conley index versus degree for equivariant gradient maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 985-997. doi: 10.3934/dcdss.2013.6.985

[10]

Zalman Balanov, Wieslaw Krawcewicz, Haibo Ruan. Applied equivariant degree, part I: An axiomatic approach to primary degree. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 983-1016. doi: 10.3934/dcds.2006.15.983

[11]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[12]

Yingjie Bi, Siyu Liu, Yong Li. Periodic solutions of differential-algebraic equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019232

[13]

Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793

[14]

Xianhua Huang. Almost periodic and periodic solutions of certain dissipative delay differential equations. Conference Publications, 1998, 1998 (Special) : 301-313. doi: 10.3934/proc.1998.1998.301

[15]

Yong Li, Zhenxin Liu, Wenhe Wang. Almost periodic solutions and stable solutions for stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5927-5944. doi: 10.3934/dcdsb.2019113

[16]

Anna Capietto, Walter Dambrosio. A topological degree approach to sublinear systems of second order differential equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 861-874. doi: 10.3934/dcds.2000.6.861

[17]

Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031

[18]

Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105

[19]

Feliz Minhós. Periodic solutions for some fully nonlinear fourth order differential equations. Conference Publications, 2011, 2011 (Special) : 1068-1077. doi: 10.3934/proc.2011.2011.1068

[20]

Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

[Back to Top]