\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Well-posedness of initial value problems for functional differential and algebraic equations of mixed type

Abstract Related Papers Cited by
  • We study the well-posedness of initial value problems for scalar functional algebraic and differential functional equations of mixed type. We provide a practical way to determine whether such problems admit unique solutions that grow at a specified rate. In particular, we exploit the fact that the answer to such questions is encoded in an integer n#. We show how this number can be tracked as a problem is transformed to a reference problem for which a Wiener-Hopf splitting can be computed. Once such a splitting is available, results due to Mallet-Paret and Verduyn-Lunel can be used to compute n#. We illustrate our techniques by analytically studying the well-posedness of two macro-economic overlapping generations models for which Wiener-Hopf splittings are not readily available.
    Mathematics Subject Classification: Primary: 34K06, 34A12; Secondary: 91B64.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Bambi, Endogenous growth and time-to-build: the AK case, J. Economic Dynamics and Control, 32 (2008), 1015-1040.doi: 10.1016/j.jedc.2007.04.002.

    [2]

    R. Boucekkine, O. Licandro, L. A. Puch and F. D. Rio, Vintage capital and the dynamics of the AK model, J. Economic Theory, 120 (2005), 39-72.doi: 10.1016/j.jet.2004.02.006.

    [3]

    D. Cass and M. E. Yaari, Individual saving, aggregate capital accumulation and efficient growth, in "Essays on the Theory of Optimal Growth," K. Shell (ed.), MIT Press, Cambridge, MA, (1967), 233-268.

    [4]

    H. d'Albis and E. Augeraud-Véron, In preparation.

    [5]

    H. d'Albis and E. Augeraud-Véron, Competitive growth in a life-cycle model: Existence and dynamics, International Economic Review, 50 (2009), 459-484.doi: 10.1111/j.1468-2354.2009.00537.x.

    [6]

    P. A. Diamond, National debt in a neoclassical growth model, American Economic Review, 55 (1965), 1126-1150.

    [7]

    O. Diekmann, S. A. van Gils, S. M. Verduyn-Lunel and H. O. Walther, "Delay Equations," Springer-Verlag, New York, 1995.

    [8]

    C. Edmond, An integral equation representation for overlapping generations in continuous time, J. Economic Theory, 143 (2008), 596-609.doi: 10.1016/j.jet.2008.03.006.

    [9]

    D. Gale, Pure exchange equilibrium of dynamic economic models, J. Economic Theory, 6 (1973), 12-36.doi: 10.1016/0022-0531(73)90041-0.

    [10]

    J. D. Geanakoplos and H. M. Polemarchakis, Walrasian indeterminacy and keynesian macroeconomics, Rev. Economic Studies, 53 (1986), 755-779.doi: 10.2307/2297718.

    [11]

    J. Grandmont, On endogenous competitive business cycles, Econometrica, 53 (1985), 995-1045.doi: 10.2307/1911010.

    [12]

    J. K. Hale and S. M. Verduyn-Lunel, "Introduction to Functional Differential Equations," Springer-Verlag, New York, 1993.

    [13]

    J. Härterich, B. Sandstede and A. Scheel, Exponential dichotomies for linear non-autonomous functional differential equations of mixed type, Indiana Univ. Math. J., 51 (2002), 1081-1109.doi: 10.1512/iumj.2002.51.2188.

    [14]

    D. K. Hughes, Variational and optimal control problems with delayed argument, J. Optimization Theory Appl., 2 (1968), 1-14.doi: 10.1007/BF00927159.

    [15]

    H. J. Hupkes, E. Augeraud-Veron and S. M. Verduyn-Lunel, Center projections for smooth difference equations of mixed type, J. Diff. Eqn., 244 (2008), 803-835.doi: 10.1016/j.jde.2007.10.033.

    [16]

    H. J. Hupkes and S. M. Verduyn-Lunel, Center manifold theory for functional differential equations of mixed type, J. Dyn. Diff. Eq., 19 (2007), 497-560.doi: 10.1007/s10884-006-9055-9.

    [17]

    H. J. Hupkes and S. M. Verduyn-Lunel, Lin's method and homoclinic bifurcations for functional differential equations of mixed type, Indiana Univ. Math. J., 58 (2009), 2433-2487.doi: 10.1512/iumj.2009.58.3661.

    [18]

    F. E. Kydland and E. C. Prescott, Time to build and aggregate fluctuations, Econometrica, 50 (1982), 1345-1370.doi: 10.2307/1913386.

    [19]

    B. J. Levin, "Distribution of Zeros of Entire Functions (translated from Russian)," American Mathematical Society, Providence, 1980.

    [20]

    T. Lloyd-Braga, C. Nourry and A. Venditti, Indeterminacy in dynamic models: when Diamond meets Ramsey, J. Economic Theory, 134 (2007), 513-536.doi: 10.1016/j.jet.2005.12.005.

    [21]

    J. Mallet-Paret, The fredholm alternative for functional differential equations of mixed type, J. Dyn. Diff. Eq., 11 (1999), 1-48.doi: 10.1023/A:1021889401235.

    [22]

    J. Mallet-Paret and S. M. Verduyn-LunelExponential dichotomies and Wiener-Hopf factorizations for mixed-type functional differential equations, J. Diff. Eq., to appear.

    [23]

    P. M. Romer, Increasing returns and long-run growth, J. Political Economy, 94 (1986), 1002-1037.doi: 10.1086/261420.

    [24]

    A. Rustichini, Functional differential equations of mixed type: the linear autonomous case, J. Dyn. Diff. Eq., 11 (1989), 121-143.doi: 10.1007/BF01047828.

    [25]

    A. Rustichini, Hopf bifurcation for functional-differential equations of mixed type, J. Dyn. Diff. Eq., 11 (1989), 145-177.doi: 10.1007/BF01047829.

    [26]

    P. A. Samuelson, An exact consumption-loan model of interest with or without the social contrivance of money, J. Political Economy, 66 (1958), 467-482.doi: 10.1086/258100.

    [27]

    J. Tirole, Asset bubbles and overlapping generations, Econometrica, 53 (1985), 1071-1100.doi: i:10.2307/1911012.

    [28]

    A. Venditti and K. Nishimura, Indeterminacy in discrete-time infinite-horizon models, in "Handbook of Optimal Growth: Vol. 1: The Discrete Time Horizon," R.A. Dana, C. Le Van, T. Mitra and K. Nishimura (eds.), Kluwer, (2006), 273-296.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(70) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return