-
Previous Article
Hopf bifurcation for some analytic differential systems in $\R^3$ via averaging theory
- DCDS Home
- This Issue
-
Next Article
Well-posedness of initial value problems for functional differential and algebraic equations of mixed type
On extensions of transitive maps
1. | Institute of Mathematics, NASU, Tereshchenkivs'ka 3, 01601 Kyiv, Ukraine |
2. | National Taras Shevchenko University of Kyiv, Faculty of Mechanics and Mathematics, bul. 7, 2, Academician Glushkov pr., 03127, Kyiv, Ukraine |
References:
[1] |
Ll. Alseda, S. Kolyada, J. Llibre and L. Snoha, Entropy and periodic points for transitive maps, Trans. Amer. Math. Soc., 351 (1999), 1551-1573.
doi: 10.1090/S0002-9947-99-02077-2. |
[2] |
D. V. Anosov and A. B. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trans. Moscow. Math. Soc., 23 (1970), 1-35. |
[3] |
Y. N. Dowker and F. G. Friedlander, On limit sets in dynamical systems, Proc. London Math. Soc., 3 (1954), 168-176.
doi: 10.1112/plms/s3-4.1.168. |
[4] |
M. Dirbak, Extensions of dynamical systems without increasing the entropy, Nonlinearity, 21 (2008), 2693-2713.
doi: 10.1088/0951-7715/21/11/011. |
[5] |
A. Fathi, Skew products and minimal dynamical systems on separable Hilbert manifolds, Ergodic Theory Dynam. Systems, 4 (1984), 213-224.
doi: 10.1017/S014338570000239X. |
[6] |
S. Glasner and B. Weiss, On the construction of minimal skew products, Israel J. Math., 34 (1979), 321-336.
doi: 10.1007/BF02760611. |
[7] |
S. Kolyada and L. Snoha, Topological entropy of nonautonomous dynamical systems, Random Comput. Dynam., 4 (1996), 205-233. |
[8] |
A. N. Sharkovskiĭ, Continuous mapping on the limit points of an iteration sequence, (Russian) Ukrain. Mat. Zh., 18 (1966), 127-130. |
[9] |
M. Stefankova, On topological entropy of transitive triangular maps, Topology Appl., 153 (2006), 2673-2679.
doi: 10.1016/j.topol.2005.11.002. |
show all references
References:
[1] |
Ll. Alseda, S. Kolyada, J. Llibre and L. Snoha, Entropy and periodic points for transitive maps, Trans. Amer. Math. Soc., 351 (1999), 1551-1573.
doi: 10.1090/S0002-9947-99-02077-2. |
[2] |
D. V. Anosov and A. B. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trans. Moscow. Math. Soc., 23 (1970), 1-35. |
[3] |
Y. N. Dowker and F. G. Friedlander, On limit sets in dynamical systems, Proc. London Math. Soc., 3 (1954), 168-176.
doi: 10.1112/plms/s3-4.1.168. |
[4] |
M. Dirbak, Extensions of dynamical systems without increasing the entropy, Nonlinearity, 21 (2008), 2693-2713.
doi: 10.1088/0951-7715/21/11/011. |
[5] |
A. Fathi, Skew products and minimal dynamical systems on separable Hilbert manifolds, Ergodic Theory Dynam. Systems, 4 (1984), 213-224.
doi: 10.1017/S014338570000239X. |
[6] |
S. Glasner and B. Weiss, On the construction of minimal skew products, Israel J. Math., 34 (1979), 321-336.
doi: 10.1007/BF02760611. |
[7] |
S. Kolyada and L. Snoha, Topological entropy of nonautonomous dynamical systems, Random Comput. Dynam., 4 (1996), 205-233. |
[8] |
A. N. Sharkovskiĭ, Continuous mapping on the limit points of an iteration sequence, (Russian) Ukrain. Mat. Zh., 18 (1966), 127-130. |
[9] |
M. Stefankova, On topological entropy of transitive triangular maps, Topology Appl., 153 (2006), 2673-2679.
doi: 10.1016/j.topol.2005.11.002. |
[1] |
Hadda Hmili. Non topologically weakly mixing interval exchanges. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1079-1091. doi: 10.3934/dcds.2010.27.1079 |
[2] |
Michał Misiurewicz, Peter Raith. Strict inequalities for the entropy of transitive piecewise monotone maps. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 451-468. doi: 10.3934/dcds.2005.13.451 |
[3] |
Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201 |
[4] |
Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 545-557 . doi: 10.3934/dcds.2011.31.545 |
[5] |
Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295 |
[6] |
Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461 |
[7] |
Grant Cairns, Barry Jessup, Marcel Nicolau. Topologically transitive homeomorphisms of quotients of tori. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 291-300. doi: 10.3934/dcds.1999.5.291 |
[8] |
Ming-Chia Li, Ming-Jiea Lyu. Positive topological entropy for multidimensional perturbations of topologically crossing homoclinicity. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 243-252. doi: 10.3934/dcds.2011.30.243 |
[9] |
Jean-Baptiste Bardet, Bastien Fernandez. Extensive escape rate in lattices of weakly coupled expanding maps. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 669-684. doi: 10.3934/dcds.2011.31.669 |
[10] |
François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete and Continuous Dynamical Systems, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275 |
[11] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[12] |
José S. Cánovas. Topological sequence entropy of $\omega$–limit sets of interval maps. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 781-786. doi: 10.3934/dcds.2001.7.781 |
[13] |
José M. Amigó, Ángel Giménez. Formulas for the topological entropy of multimodal maps based on min-max symbols. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3415-3434. doi: 10.3934/dcdsb.2015.20.3415 |
[14] |
L'ubomír Snoha, Vladimír Špitalský. Recurrence equals uniform recurrence does not imply zero entropy for triangular maps of the square. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 821-835. doi: 10.3934/dcds.2006.14.821 |
[15] |
Viorel Nitica. Examples of topologically transitive skew-products. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 351-360. doi: 10.3934/dcds.2000.6.351 |
[16] |
Jan Kwiatkowski, Artur Siemaszko. Discrete orbits in topologically transitive cylindrical transformations. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 945-961. doi: 10.3934/dcds.2010.27.945 |
[17] |
Mykola Matviichuk, Damoon Robatian. Chain transitive induced interval maps on continua. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 741-755. doi: 10.3934/dcds.2015.35.741 |
[18] |
Cristina Lizana, Vilton Pinheiro, Paulo Varandas. Contribution to the ergodic theory of robustly transitive maps. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 353-365. doi: 10.3934/dcds.2015.35.353 |
[19] |
Tingting Zhang, Àngel Jorba, Jianguo Si. Weakly hyperbolic invariant tori for two dimensional quasiperiodically forced maps in a degenerate case. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6599-6622. doi: 10.3934/dcds.2016086 |
[20] |
Ralf Spatzier, Lei Yang. Exponential mixing and smooth classification of commuting expanding maps. Journal of Modern Dynamics, 2017, 11: 263-312. doi: 10.3934/jmd.2017012 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]