• Previous Article
    Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay
  • DCDS Home
  • This Issue
  • Next Article
    Regularity of center manifolds under nonuniform hyperbolicity
April  2011, 30(1): 77-113. doi: 10.3934/dcds.2011.30.77

The generic behavior of solutions to some evolution equations: Asymptotics and Sobolev norms

1. 

University of Wisconsin-Madison, Mathematics Department, 480 Lincoln Dr. Madison, WI 53706-1388, United States

Received  December 2009 Revised  May 2010 Published  February 2011

In this paper, we study the generic behavior of the solutions to a large class of evolution equations. The Schrödinger evolution is considered as an application.
Citation: Sergey A. Denisov. The generic behavior of solutions to some evolution equations: Asymptotics and Sobolev norms. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 77-113. doi: 10.3934/dcds.2011.30.77
References:
[1]

M. Abramowitz and I. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,", National Bureau of Standards Applied Mathematics Series, 55 ().   Google Scholar

[2]

A. Böttcher and B. Silbermann, "Introduction to Large Truncated Toeplitz Matrices,", Springer. 1998., (1998).   Google Scholar

[3]

J. Bourgain, On growth of Sobolev norms in linear Schrödinger equations with smooth time dependent potential,, J. Anal. Math., 77 (1999), 315.  doi: 10.1007/BF02791265.  Google Scholar

[4]

M. Christ and A. Kiselev, Scattering and wave operators for one-dimensional Schrödinger operators with slowly decaying nonsmooth potentials,, Geom. Funct. Anal., 12 (2002), 1174.  doi: 10.1007/s00039-002-1174-9.  Google Scholar

[5]

S. Denisov, Continuous analogs of polynomials orthogonal on the unit circle. Krein systems,, Int. Math. Res. Surveys, 2006 (2006).   Google Scholar

[6]

S. Denisov, An evolution equation as the WKB correction in long-time asymptotics of Schrödinger dynamics,, Comm. Partial Differential Equations, 33 (2008), 307.  doi: 10.1080/03605300701249655.  Google Scholar

[7]

O. Jørsboe and L. Mejlbro, "The Carleson-Hunt Theorem on Fourier Series,", Lecture Notes in Mathematics \textbf{911}, 911 (1982).   Google Scholar

[8]

A. Kiselev, Stability of the absolutely continuous spectrum of the Schrödinger equation under slowly decaying perturbations and a.e. convergence of integral operators,, Duke Math. J., 94 (1998), 619.  doi: 10.1215/S0012-7094-98-09425-X.  Google Scholar

[9]

G. Nenciu, Adiabatic theory: Stability of systems with increasing gaps,, Ann. Inst. H. Poincare Phys. Theor., 67 (1997), 411.   Google Scholar

[10]

B. Perthame, Mathematical tools for kinetic equations,, Bull. Amer. Math. Soc. (N.S.), 41 (2004), 205.   Google Scholar

[11]

B. Simon, "Orthogonal Polynomials on the Unit Circle,", Parts 1 and 2. American Mathematical Society Colloquium Publications, 54 (2005).   Google Scholar

[12]

W.-M. Wang, Bounded Sobolev norms for linear Schrödinger equations under resonant perturbations,, J. Funct. Anal., 254 (2008), 2926.  doi: 10.1016/j.jfa.2007.11.012.  Google Scholar

show all references

References:
[1]

M. Abramowitz and I. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,", National Bureau of Standards Applied Mathematics Series, 55 ().   Google Scholar

[2]

A. Böttcher and B. Silbermann, "Introduction to Large Truncated Toeplitz Matrices,", Springer. 1998., (1998).   Google Scholar

[3]

J. Bourgain, On growth of Sobolev norms in linear Schrödinger equations with smooth time dependent potential,, J. Anal. Math., 77 (1999), 315.  doi: 10.1007/BF02791265.  Google Scholar

[4]

M. Christ and A. Kiselev, Scattering and wave operators for one-dimensional Schrödinger operators with slowly decaying nonsmooth potentials,, Geom. Funct. Anal., 12 (2002), 1174.  doi: 10.1007/s00039-002-1174-9.  Google Scholar

[5]

S. Denisov, Continuous analogs of polynomials orthogonal on the unit circle. Krein systems,, Int. Math. Res. Surveys, 2006 (2006).   Google Scholar

[6]

S. Denisov, An evolution equation as the WKB correction in long-time asymptotics of Schrödinger dynamics,, Comm. Partial Differential Equations, 33 (2008), 307.  doi: 10.1080/03605300701249655.  Google Scholar

[7]

O. Jørsboe and L. Mejlbro, "The Carleson-Hunt Theorem on Fourier Series,", Lecture Notes in Mathematics \textbf{911}, 911 (1982).   Google Scholar

[8]

A. Kiselev, Stability of the absolutely continuous spectrum of the Schrödinger equation under slowly decaying perturbations and a.e. convergence of integral operators,, Duke Math. J., 94 (1998), 619.  doi: 10.1215/S0012-7094-98-09425-X.  Google Scholar

[9]

G. Nenciu, Adiabatic theory: Stability of systems with increasing gaps,, Ann. Inst. H. Poincare Phys. Theor., 67 (1997), 411.   Google Scholar

[10]

B. Perthame, Mathematical tools for kinetic equations,, Bull. Amer. Math. Soc. (N.S.), 41 (2004), 205.   Google Scholar

[11]

B. Simon, "Orthogonal Polynomials on the Unit Circle,", Parts 1 and 2. American Mathematical Society Colloquium Publications, 54 (2005).   Google Scholar

[12]

W.-M. Wang, Bounded Sobolev norms for linear Schrödinger equations under resonant perturbations,, J. Funct. Anal., 254 (2008), 2926.  doi: 10.1016/j.jfa.2007.11.012.  Google Scholar

[1]

Manuel Núñez. The long-time evolution of mean field magnetohydrodynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 465-478. doi: 10.3934/dcdsb.2004.4.465

[2]

Vladimir Varlamov. Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 675-702. doi: 10.3934/dcds.2001.7.675

[3]

C. I. Christov, M. D. Todorov. Investigation of the long-time evolution of localized solutions of a dispersive wave system. Conference Publications, 2013, 2013 (special) : 139-148. doi: 10.3934/proc.2013.2013.139

[4]

A. Kh. Khanmamedov. Long-time behaviour of doubly nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1373-1400. doi: 10.3934/cpaa.2009.8.1373

[5]

Chang Zhang, Fang Li, Jinqiao Duan. Long-time behavior of a class of nonlocal partial differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 749-763. doi: 10.3934/dcdsb.2018041

[6]

Hongtao Li, Shan Ma, Chengkui Zhong. Long-time behavior for a class of degenerate parabolic equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2873-2892. doi: 10.3934/dcds.2014.34.2873

[7]

A. Kh. Khanmamedov. Long-time behaviour of wave equations with nonlinear interior damping. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1185-1198. doi: 10.3934/dcds.2008.21.1185

[8]

H. A. Erbay, S. Erbay, A. Erkip. Long-time existence of solutions to nonlocal nonlinear bidirectional wave equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2877-2891. doi: 10.3934/dcds.2019119

[9]

Shan Ma, Chunyou Sun. Long-time behavior for a class of weighted equations with degeneracy. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1889-1902. doi: 10.3934/dcds.2020098

[10]

Vedran Sohinger. Bounds on the growth of high Sobolev norms of solutions to 2D Hartree equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3733-3771. doi: 10.3934/dcds.2012.32.3733

[11]

Marie Doumic, Miguel Escobedo. Time asymptotics for a critical case in fragmentation and growth-fragmentation equations. Kinetic & Related Models, 2016, 9 (2) : 251-297. doi: 10.3934/krm.2016.9.251

[12]

Joackim Bernier. Bounds on the growth of high discrete Sobolev norms for the cubic discrete nonlinear Schrödinger equations on $ h\mathbb{Z} $. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3179-3195. doi: 10.3934/dcds.2019131

[13]

Francesca Bucci, Igor Chueshov. Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 557-586. doi: 10.3934/dcds.2008.22.557

[14]

Giulio Schimperna, Antonio Segatti, Ulisse Stefanelli. Well-posedness and long-time behavior for a class of doubly nonlinear equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 15-38. doi: 10.3934/dcds.2007.18.15

[15]

Horst Osberger. Long-time behavior of a fully discrete Lagrangian scheme for a family of fourth order equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 405-434. doi: 10.3934/dcds.2017017

[16]

Xia Li. Long-time asymptotic solutions of convex hamilton-jacobi equations depending on unknown functions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5151-5162. doi: 10.3934/dcds.2017223

[17]

Linghai Zhang. Long-time asymptotic behaviors of solutions of $N$-dimensional dissipative partial differential equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 1025-1042. doi: 10.3934/dcds.2002.8.1025

[18]

Joackim Bernier, Michel Mehrenberger. Long-time behavior of second order linearized Vlasov-Poisson equations near a homogeneous equilibrium. Kinetic & Related Models, 2020, 13 (1) : 129-168. doi: 10.3934/krm.2020005

[19]

Myeongju Chae, Soonsik Kwon. The stability of nonlinear Schrödinger equations with a potential in high Sobolev norms revisited. Communications on Pure & Applied Analysis, 2016, 15 (2) : 341-365. doi: 10.3934/cpaa.2016.15.341

[20]

Igor Chueshov, Peter E. Kloeden, Meihua Yang. Long term dynamics of second order-in-time stochastic evolution equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 991-1009. doi: 10.3934/dcdsb.2018139

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]