August  2011, 30(3): 779-790. doi: 10.3934/dcds.2011.30.779

Hopf bifurcation for some analytic differential systems in $\R^3$ via averaging theory

1. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona

2. 

Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais 1049-001, Lisboa, Portugal

Received  November 2009 Revised  January 2011 Published  March 2011

We study the Hopf bifurcation from the singular point with eigenvalues $a$ε$ \ \pm\ bi$ and $c $ε located at the origen of an analytic differential system of the form $ \dot x= f( x)$, where $x \in \R^3$. Under convenient assumptions we prove that the Hopf bifurcation can produce $1$, $2$ or $3$ limit cycles. We also characterize the stability of these limit cycles. The main tool for proving these results is the averaging theory of first and second order.
Citation: Jaume Llibre, Clàudia Valls. Hopf bifurcation for some analytic differential systems in $\R^3$ via averaging theory. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 779-790. doi: 10.3934/dcds.2011.30.779
References:
[1]

C. A. Biuca and J. Llibre, Averaging methods for finding periodic orbits via Brownew degree,, Bull. Sci. Math, 128 (2004), 7.  doi: 10.1016/j.bulsci.2003.09.002.  Google Scholar

[2]

C. A. Buzzi, J. Llibre and P. R. Da Silva, Generalized $3$-dimensional Hopf bifurcation via averaging theory,, Discrete Continuous Dynam. Systems - A, 17 (2007), 529.   Google Scholar

[3]

J. Llibre, Averaging theory and limit cycles for quadratic systems,, Radovi Matematicki, 11 (2002), 215.   Google Scholar

[4]

J. A. Sanders and F. Verhulst, "Averaging Methods in Nonlinear Dynamical Systems,", Applied Mathematical Sci., 59 (1985).   Google Scholar

[5]

F. Verhulst, "Nonlinear Differential Equations and Dynamical Systems,", Universitext. Springer-Verlag, (1996).   Google Scholar

show all references

References:
[1]

C. A. Biuca and J. Llibre, Averaging methods for finding periodic orbits via Brownew degree,, Bull. Sci. Math, 128 (2004), 7.  doi: 10.1016/j.bulsci.2003.09.002.  Google Scholar

[2]

C. A. Buzzi, J. Llibre and P. R. Da Silva, Generalized $3$-dimensional Hopf bifurcation via averaging theory,, Discrete Continuous Dynam. Systems - A, 17 (2007), 529.   Google Scholar

[3]

J. Llibre, Averaging theory and limit cycles for quadratic systems,, Radovi Matematicki, 11 (2002), 215.   Google Scholar

[4]

J. A. Sanders and F. Verhulst, "Averaging Methods in Nonlinear Dynamical Systems,", Applied Mathematical Sci., 59 (1985).   Google Scholar

[5]

F. Verhulst, "Nonlinear Differential Equations and Dynamical Systems,", Universitext. Springer-Verlag, (1996).   Google Scholar

[1]

Jaume Llibre, Claudio A. Buzzi, Paulo R. da Silva. 3-dimensional Hopf bifurcation via averaging theory. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 529-540. doi: 10.3934/dcds.2007.17.529

[2]

Jaume Llibre, Amar Makhlouf, Sabrina Badi. $3$ - dimensional Hopf bifurcation via averaging theory of second order. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1287-1295. doi: 10.3934/dcds.2009.25.1287

[3]

Xingwu Chen, Jaume Llibre, Weinian Zhang. Averaging approach to cyclicity of hopf bifurcation in planar linear-quadratic polynomial discontinuous differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3953-3965. doi: 10.3934/dcdsb.2017203

[4]

Shanshan Liu, Maoan Han. Bifurcation of limit cycles in a family of piecewise smooth systems via averaging theory. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020133

[5]

Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152

[6]

R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure & Applied Analysis, 2003, 2 (2) : 147-158. doi: 10.3934/cpaa.2003.2.147

[7]

Rebecca McKay, Theodore Kolokolnikov, Paul Muir. Interface oscillations in reaction-diffusion systems above the Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2523-2543. doi: 10.3934/dcdsb.2012.17.2523

[8]

Jaume Llibre, Ernesto Pérez-Chavela. Zero-Hopf bifurcation for a class of Lorenz-type systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1731-1736. doi: 10.3934/dcdsb.2014.19.1731

[9]

Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997

[10]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[11]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[12]

Carolin Kreisbeck. A note on $3$d-$1$d dimension reduction with differential constraints. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 55-73. doi: 10.3934/dcdss.2017003

[13]

Carmen Núñez, Rafael Obaya. A non-autonomous bifurcation theory for deterministic scalar differential equations. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 701-730. doi: 10.3934/dcdsb.2008.9.701

[14]

Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems. Communications on Pure & Applied Analysis, 2004, 3 (1) : 75-84. doi: 10.3934/cpaa.2004.3.75

[15]

Santiago Capriotti. Dirac constraints in field theory and exterior differential systems. Journal of Geometric Mechanics, 2010, 2 (1) : 1-50. doi: 10.3934/jgm.2010.2.1

[16]

Andrej V. Plotnikov, Tatyana A. Komleva, Liliya I. Plotnikova. The averaging of fuzzy hyperbolic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1987-1998. doi: 10.3934/dcdsb.2017117

[17]

Luis Barreira. Dimension theory of flows: A survey. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3345-3362. doi: 10.3934/dcdsb.2015.20.3345

[18]

Salomón Rebollo-Perdomo, Claudio Vidal. Bifurcation of limit cycles for a family of perturbed Kukles differential systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4189-4202. doi: 10.3934/dcds.2018182

[19]

Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098

[20]

Fernando Antoneli, Ana Paula S. Dias, Rui Paiva. Coupled cell networks: Hopf bifurcation and interior symmetry. Conference Publications, 2011, 2011 (Special) : 71-78. doi: 10.3934/proc.2011.2011.71

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]