\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global bifurcation and stable two-phase separation for a phase field model in a disk

Abstract / Introduction Related Papers Cited by
  • Let D:$=\{(x,y);\ x^2+y^2 < l^2\}\subset\R^2$. We study the shape of a local minimizer of the problem

    $E(u)=\int_{D}(\frac{|\nabla u|^2}{2}+\lambda W(u)) dx\ \ $subject to$ \ \ m=\frac{1}{|D|}\int_Dudx $

    and study the global structure of critical points. We show that for an arbitrary potential $W\in C^4$ every level set of every nonconstant local minimizer is a $C^1$-curve and it divides $D$ into exactly two simply connected subdomains. Next we consider the case $W(u)=(u^2-1)^2/4$ (Cahn-Hilliard equation). When $\lambda$ varies and $m$ is fixed, we show that this problem has an unbounded continuum of critical points. When $m$ varies and $\lambda$ is fixed, we show that this problem has a bounded continuum meeting at two different points on the trivial branch. Moreover, we show that in each case a bifurcating critical point is stable (a local minimizer) near the bifurcation point in a certain parameter range. The main technique is the nodal curve which relates the shape with the Morse index. We do not use a small parameter or the $\Gamma$-convergence technique.

    Mathematics Subject Classification: Primary: 35B32, 35B36; Secondary: 35J20, 35J61.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Carr, M. Gurtin and M. Slemrod, Structured phase transitions on a finite interval, Arch. Rational Mech. Anal., 86 (1984), 317-351.doi: 10.1007/BF00280031.

    [2]

    R. Casten and C. Holland, Instability results for reaction diffusion equations with Neumann boundary conditions, J. Differential Equations, 27 (1978), 266-273.doi: 10.1016/0022-0396(78)90033-5.

    [3]

    P. Freitas and C. Rocha, Lyapunov functionals and stability for FitzHugh-Nagumo systems, J. Differential Equations, 169 (2001), 208-227.doi: 10.1006/jdeq.2000.3901.

    [4]

    M. Gurtin and H. Matano, On the structure of equilibrium phase transitions within the gradient theory of fluids, Quart. Appl. Math., 46 (1988), 301-317.

    [5]

    M. Grinfeld and A. Novick-Cohen, Counting stationary solutions of the Cahn-Hilliard equation by transversality arguments, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 351-370.

    [6]

    B. Helffer, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and M. P. Owen, Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non-simply connected domains, Comm. Math. Phys., 202 (1999), 629-649.doi: 10.1007/s002200050599.

    [7]

    P. Hartman and A. Wintner, On the local behavior of solutions of non-parabolic partial differential equations, Amer. J. Math., 75 (1953), 449-476.doi: 10.2307/2372496.

    [8]

    H. Kielhöfer, Pattern formation of the stationary Cahn-Hilliard model, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1219-1243.

    [9]

    H. Kielhöfer, "Bifurcation Theory. An Introduction with Applications to PDEs," Applied Mathematical Sciences, 156, Springer-Verlag, New York, 2004, viii+346 pp.

    [10]

    S. Kosugi, Y. Morita and S. Yotsutani, Stationary solutions to the one-dimensional Cahn-Hilliard equation: proof by the complete elliptic integrals, Discrete Contin. Dyn. Syst., 19 (2007), 609-629.doi: 10.3934/dcds.2007.19.609.

    [11]

    S. Luckhaus and L. Modica, The Gibbs-Thompson relation within the gradient theory of phase transitions, Arch. Rational Mech. Anal., 107 (1989), 71-83.doi: 10.1007/BF00251427.

    [12]

    H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., 15 (1979), 401-454.doi: 10.2977/prims/1195188180.

    [13]

    H. Matano, Private communication (2005).

    [14]

    B. McCartin, Eigenstructure of the equilateral triangle. II. The Neumann problem, Math. Probl. Eng., 8 (2002), 517-539.doi: 10.1080/1024123021000053664.

    [15]

    Y. Miyamoto, An instability criterion for activator-inhibitor systems in a two-dimensional ball, J. Differential Equations, 229 (2006), 494-508.doi: 10.1016/j.jde.2006.03.015.

    [16]

    Y. Miyamoto, An instability criterion for activator-inhibitor systems in a two-dimensional ball II, J. Differential Equations, 239 (2007), 61-71.doi: oi:10.1016/j.jde.2007.05.006.

    [17]

    Y. Miyamoto, On the shape of the stable patterns for activator-inhibitor systems in two-dimensional domains, Quart. Appl. Math., 65 (2007), 357-374.

    [18]

    Y. Miyamoto, Global branches of non-radially symmetric solutions to a semilinear Neumann problem in a disk, J. Funct. Anal., 256 (2009), 747-776.doi: 10.1016/j.jfa.2008.11.023.

    [19]

    Y. Miyamoto, The "hot spots" conjecture for a certain class of planar convex domains, J. Math. Phys., 50 (2009), 103530, 7pp.

    [20]

    L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., 98 (1987), 123-142.doi: 10.1007/BF00251230.

    [21]

    S. Maier-Paape and U. Miller, Connecting continua and curves of equilibria of the Cahn-Hilliard equation on the square, Discrete Contin. Dyn. Syst., 15 (2006), 1137-1153.doi: 10.3934/dcds.2006.15.1137.

    [22]

    Y. Nishiura, Coexistence of infinitely many stable solutions to reaction diffusion systems in the singular limit, Dynamics Reported, 3 (1994), 25-103.

    [23]

    W. M. Ni, P. Poláčik and E. Yanagida, Monotonicity of stable solutions in shadow systems, Trans. Amer. Math. Soc., 353 (2001), 5057-5069.doi: 10.1090/S0002-9947-01-02880-X.

    [24]

    P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Arch. Rational Mech. Anal., 101 (1988), 209-260.doi: 10.1007/BF00253122.

    [25]

    T. Suzuki and S. Tasaki, Stationary Fix-Caginalp equation with non-local term, Nonlinear Anal., 71 (2009), 1329-1349.doi: 10.1016/j.na.2008.12.007.

    [26]

    P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Rational Mech. Anal., 141 (1998), 375-400.doi: 10.1007/s002050050081.

    [27]

    E. Yanagida, Private communication (2006).

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(94) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return