    August  2011, 30(3): 791-806. doi: 10.3934/dcds.2011.30.791

## Global bifurcation and stable two-phase separation for a phase field model in a disk

 1 Department of Mathematics, Tokyo Institute of Technology, O-Okayama, Meguro-ku, Tokyo 152-8551, Japan

Received  January 2010 Revised  October 2010 Published  March 2011

Let D:$=\{(x,y);\ x^2+y^2 < l^2\}\subset\R^2$. We study the shape of a local minimizer of the problem

$E(u)=\int_{D}(\frac{|\nabla u|^2}{2}+\lambda W(u)) dx\ \$subject to$\ \ m=\frac{1}{|D|}\int_Dudx$

and study the global structure of critical points. We show that for an arbitrary potential $W\in C^4$ every level set of every nonconstant local minimizer is a $C^1$-curve and it divides $D$ into exactly two simply connected subdomains. Next we consider the case $W(u)=(u^2-1)^2/4$ (Cahn-Hilliard equation). When $\lambda$ varies and $m$ is fixed, we show that this problem has an unbounded continuum of critical points. When $m$ varies and $\lambda$ is fixed, we show that this problem has a bounded continuum meeting at two different points on the trivial branch. Moreover, we show that in each case a bifurcating critical point is stable (a local minimizer) near the bifurcation point in a certain parameter range. The main technique is the nodal curve which relates the shape with the Morse index. We do not use a small parameter or the $\Gamma$-convergence technique.

Citation: Yasuhito Miyamoto. Global bifurcation and stable two-phase separation for a phase field model in a disk. Discrete & Continuous Dynamical Systems, 2011, 30 (3) : 791-806. doi: 10.3934/dcds.2011.30.791
##### References:
  J. Carr, M. Gurtin and M. Slemrod, Structured phase transitions on a finite interval, Arch. Rational Mech. Anal., 86 (1984), 317-351. doi: 10.1007/BF00280031.  Google Scholar  R. Casten and C. Holland, Instability results for reaction diffusion equations with Neumann boundary conditions, J. Differential Equations, 27 (1978), 266-273. doi: 10.1016/0022-0396(78)90033-5.  Google Scholar  P. Freitas and C. Rocha, Lyapunov functionals and stability for FitzHugh-Nagumo systems, J. Differential Equations, 169 (2001), 208-227. doi: 10.1006/jdeq.2000.3901.  Google Scholar  M. Gurtin and H. Matano, On the structure of equilibrium phase transitions within the gradient theory of fluids, Quart. Appl. Math., 46 (1988), 301-317. Google Scholar  M. Grinfeld and A. Novick-Cohen, Counting stationary solutions of the Cahn-Hilliard equation by transversality arguments, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 351-370. Google Scholar  B. Helffer, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and M. P. Owen, Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non-simply connected domains, Comm. Math. Phys., 202 (1999), 629-649. doi: 10.1007/s002200050599.  Google Scholar  P. Hartman and A. Wintner, On the local behavior of solutions of non-parabolic partial differential equations, Amer. J. Math., 75 (1953), 449-476. doi: 10.2307/2372496.  Google Scholar  H. Kielhöfer, Pattern formation of the stationary Cahn-Hilliard model, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1219-1243. Google Scholar  H. Kielhöfer, "Bifurcation Theory. An Introduction with Applications to PDEs," Applied Mathematical Sciences, 156, Springer-Verlag, New York, 2004, viii+346 pp. Google Scholar  S. Kosugi, Y. Morita and S. Yotsutani, Stationary solutions to the one-dimensional Cahn-Hilliard equation: proof by the complete elliptic integrals, Discrete Contin. Dyn. Syst., 19 (2007), 609-629. doi: 10.3934/dcds.2007.19.609.  Google Scholar  S. Luckhaus and L. Modica, The Gibbs-Thompson relation within the gradient theory of phase transitions, Arch. Rational Mech. Anal., 107 (1989), 71-83. doi: 10.1007/BF00251427.  Google Scholar  H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., 15 (1979), 401-454. doi: 10.2977/prims/1195188180.  Google Scholar  H. Matano, Private communication (2005). Google Scholar  B. McCartin, Eigenstructure of the equilateral triangle. II. The Neumann problem, Math. Probl. Eng., 8 (2002), 517-539. doi: 10.1080/1024123021000053664.  Google Scholar  Y. Miyamoto, An instability criterion for activator-inhibitor systems in a two-dimensional ball, J. Differential Equations, 229 (2006), 494-508. doi: 10.1016/j.jde.2006.03.015.  Google Scholar  Y. Miyamoto, An instability criterion for activator-inhibitor systems in a two-dimensional ball II, J. Differential Equations, 239 (2007), 61-71. doi: oi:10.1016/j.jde.2007.05.006.  Google Scholar  Y. Miyamoto, On the shape of the stable patterns for activator-inhibitor systems in two-dimensional domains, Quart. Appl. Math., 65 (2007), 357-374. Google Scholar  Y. Miyamoto, Global branches of non-radially symmetric solutions to a semilinear Neumann problem in a disk, J. Funct. Anal., 256 (2009), 747-776. doi: 10.1016/j.jfa.2008.11.023.  Google Scholar  Y. Miyamoto, The "hot spots" conjecture for a certain class of planar convex domains, J. Math. Phys., 50 (2009), 103530, 7pp. Google Scholar  L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., 98 (1987), 123-142. doi: 10.1007/BF00251230.  Google Scholar  S. Maier-Paape and U. Miller, Connecting continua and curves of equilibria of the Cahn-Hilliard equation on the square, Discrete Contin. Dyn. Syst., 15 (2006), 1137-1153. doi: 10.3934/dcds.2006.15.1137.  Google Scholar  Y. Nishiura, Coexistence of infinitely many stable solutions to reaction diffusion systems in the singular limit, Dynamics Reported, 3 (1994), 25-103. Google Scholar  W. M. Ni, P. Poláčik and E. Yanagida, Monotonicity of stable solutions in shadow systems, Trans. Amer. Math. Soc., 353 (2001), 5057-5069. doi: 10.1090/S0002-9947-01-02880-X.  Google Scholar  P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Arch. Rational Mech. Anal., 101 (1988), 209-260. doi: 10.1007/BF00253122.  Google Scholar  T. Suzuki and S. Tasaki, Stationary Fix-Caginalp equation with non-local term, Nonlinear Anal., 71 (2009), 1329-1349. doi: 10.1016/j.na.2008.12.007.  Google Scholar  P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Rational Mech. Anal., 141 (1998), 375-400. doi: 10.1007/s002050050081.  Google Scholar  E. Yanagida, Private communication (2006). Google Scholar

show all references

##### References:
  J. Carr, M. Gurtin and M. Slemrod, Structured phase transitions on a finite interval, Arch. Rational Mech. Anal., 86 (1984), 317-351. doi: 10.1007/BF00280031.  Google Scholar  R. Casten and C. Holland, Instability results for reaction diffusion equations with Neumann boundary conditions, J. Differential Equations, 27 (1978), 266-273. doi: 10.1016/0022-0396(78)90033-5.  Google Scholar  P. Freitas and C. Rocha, Lyapunov functionals and stability for FitzHugh-Nagumo systems, J. Differential Equations, 169 (2001), 208-227. doi: 10.1006/jdeq.2000.3901.  Google Scholar  M. Gurtin and H. Matano, On the structure of equilibrium phase transitions within the gradient theory of fluids, Quart. Appl. Math., 46 (1988), 301-317. Google Scholar  M. Grinfeld and A. Novick-Cohen, Counting stationary solutions of the Cahn-Hilliard equation by transversality arguments, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 351-370. Google Scholar  B. Helffer, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and M. P. Owen, Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non-simply connected domains, Comm. Math. Phys., 202 (1999), 629-649. doi: 10.1007/s002200050599.  Google Scholar  P. Hartman and A. Wintner, On the local behavior of solutions of non-parabolic partial differential equations, Amer. J. Math., 75 (1953), 449-476. doi: 10.2307/2372496.  Google Scholar  H. Kielhöfer, Pattern formation of the stationary Cahn-Hilliard model, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1219-1243. Google Scholar  H. Kielhöfer, "Bifurcation Theory. An Introduction with Applications to PDEs," Applied Mathematical Sciences, 156, Springer-Verlag, New York, 2004, viii+346 pp. Google Scholar  S. Kosugi, Y. Morita and S. Yotsutani, Stationary solutions to the one-dimensional Cahn-Hilliard equation: proof by the complete elliptic integrals, Discrete Contin. Dyn. Syst., 19 (2007), 609-629. doi: 10.3934/dcds.2007.19.609.  Google Scholar  S. Luckhaus and L. Modica, The Gibbs-Thompson relation within the gradient theory of phase transitions, Arch. Rational Mech. Anal., 107 (1989), 71-83. doi: 10.1007/BF00251427.  Google Scholar  H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., 15 (1979), 401-454. doi: 10.2977/prims/1195188180.  Google Scholar  H. Matano, Private communication (2005). Google Scholar  B. McCartin, Eigenstructure of the equilateral triangle. II. The Neumann problem, Math. Probl. Eng., 8 (2002), 517-539. doi: 10.1080/1024123021000053664.  Google Scholar  Y. Miyamoto, An instability criterion for activator-inhibitor systems in a two-dimensional ball, J. Differential Equations, 229 (2006), 494-508. doi: 10.1016/j.jde.2006.03.015.  Google Scholar  Y. Miyamoto, An instability criterion for activator-inhibitor systems in a two-dimensional ball II, J. Differential Equations, 239 (2007), 61-71. doi: oi:10.1016/j.jde.2007.05.006.  Google Scholar  Y. Miyamoto, On the shape of the stable patterns for activator-inhibitor systems in two-dimensional domains, Quart. Appl. Math., 65 (2007), 357-374. Google Scholar  Y. Miyamoto, Global branches of non-radially symmetric solutions to a semilinear Neumann problem in a disk, J. Funct. Anal., 256 (2009), 747-776. doi: 10.1016/j.jfa.2008.11.023.  Google Scholar  Y. Miyamoto, The "hot spots" conjecture for a certain class of planar convex domains, J. Math. Phys., 50 (2009), 103530, 7pp. Google Scholar  L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., 98 (1987), 123-142. doi: 10.1007/BF00251230.  Google Scholar  S. Maier-Paape and U. Miller, Connecting continua and curves of equilibria of the Cahn-Hilliard equation on the square, Discrete Contin. Dyn. Syst., 15 (2006), 1137-1153. doi: 10.3934/dcds.2006.15.1137.  Google Scholar  Y. Nishiura, Coexistence of infinitely many stable solutions to reaction diffusion systems in the singular limit, Dynamics Reported, 3 (1994), 25-103. Google Scholar  W. M. Ni, P. Poláčik and E. Yanagida, Monotonicity of stable solutions in shadow systems, Trans. Amer. Math. Soc., 353 (2001), 5057-5069. doi: 10.1090/S0002-9947-01-02880-X.  Google Scholar  P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Arch. Rational Mech. Anal., 101 (1988), 209-260. doi: 10.1007/BF00253122.  Google Scholar  T. Suzuki and S. Tasaki, Stationary Fix-Caginalp equation with non-local term, Nonlinear Anal., 71 (2009), 1329-1349. doi: 10.1016/j.na.2008.12.007.  Google Scholar  P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Rational Mech. Anal., 141 (1998), 375-400. doi: 10.1007/s002050050081.  Google Scholar  E. Yanagida, Private communication (2006). Google Scholar
  Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Phase transition and separation in compressible Cahn-Hilliard fluids. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 73-88. doi: 10.3934/dcdsb.2014.19.73  Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207  Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013  Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033  Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461  Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423  Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741  Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127  Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303  Dimitra Antonopoulou, Georgia Karali, Georgios T. Kossioris. Asymptotics for a generalized Cahn-Hilliard equation with forcing terms. Discrete & Continuous Dynamical Systems, 2011, 30 (4) : 1037-1054. doi: 10.3934/dcds.2011.30.1037  Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163  Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31  Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275  S. Maier-Paape, Ulrich Miller. Connecting continua and curves of equilibria of the Cahn-Hilliard equation on the square. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1137-1153. doi: 10.3934/dcds.2006.15.1137  Laurence Cherfils, Madalina Petcu, Morgan Pierre. A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems, 2010, 27 (4) : 1511-1533. doi: 10.3934/dcds.2010.27.1511  Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, 2021, 20 (2) : 495-510. doi: 10.3934/cpaa.2020277  Amy Novick-Cohen, Andrey Shishkov. Upper bounds for coarsening for the degenerate Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems, 2009, 25 (1) : 251-272. doi: 10.3934/dcds.2009.25.251  Gianni Gilardi, A. Miranville, Giulio Schimperna. On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (3) : 881-912. doi: 10.3934/cpaa.2009.8.881  Irena PawŁow. The Cahn--Hilliard--de Gennes and generalized Penrose--Fife models for polymer phase separation. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2711-2739. doi: 10.3934/dcds.2015.35.2711  Andrea Signori. Optimal treatment for a phase field system of Cahn-Hilliard type modeling tumor growth by asymptotic scheme. Mathematical Control & Related Fields, 2020, 10 (2) : 305-331. doi: 10.3934/mcrf.2019040

2020 Impact Factor: 1.392