August  2011, 30(3): 851-871. doi: 10.3934/dcds.2011.30.851

Stability for the modified and fourth-order Benjamin-Bona-Mahony equations

1. 

Department of Mathematics, IME-USP, Rua do Matão 1010, Cidade Universitária, CEP 05508-090, São Paulo, SP, Brazil

2. 

Department of Mathematics, IMECC-UNICAMP, Rua Sérgio Buarque de Holanda 651, CEP 13083-859, Campinas, SP, Brazil, Brazil

Received  November 2009 Revised  December 2010 Published  March 2011

In this work we establish new results about the existence of smooth, explicit families of periodic traveling waves for the modified and fourth-order Benjamin-Bona-Mahony equations. We also prove, under certain conditions, that these families are nonlinearly stable in the energy space. The techniques employed may be of further use in the study of the stability of periodic traveling-wave solutions of other nonlinear evolution equations.
Citation: Jaime Angulo Pava, Carlos Banquet, Márcia Scialom. Stability for the modified and fourth-order Benjamin-Bona-Mahony equations. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 851-871. doi: 10.3934/dcds.2011.30.851
References:
[1]

J. Albert, Dispersion of low-energy waves for the generalized Benjamin-Bona-Mahony equation,, J. Differential Equations, 63 (1986), 117.  doi: 10.1016/0022-0396(86)90057-4.  Google Scholar

[2]

J. Angulo, Stability of cnoidal waves to Hirota-Satsuma systems,, Mat. Contemp., 27 (2004), 189.   Google Scholar

[3]

J. Angulo, Non-linear stability of periodic traveling-wave solutions to the Schrödinger and the modified Korteweg-de Vries,, J. Differential Equations, 235 (2007), 1.  doi: 10.1016/j.jde.2007.01.003.  Google Scholar

[4]

J. Angulo, "Nonlinear Dispersive Evolution Equations: Existence and Stability of Solitary and Periodic Traveling-Waves Solutions,", Mathematical Surveys and Monographs Series (SURV), (2009).   Google Scholar

[5]

J. Angulo, C. Banquet and M. Scialom, Nonlinear stability of periodic traveling-wave solutions for the regularized Benjamin-Ono equation and BBM equation,, preprint, ().   Google Scholar

[6]

J. Angulo and F. Natali, Positivity properties of the Fourier transform and the stability of periodic traveling-wave solutions,, SIAM, 40 (2008), 1123.  doi: 10.1137/080718450.  Google Scholar

[7]

J. Angulo and F. Natali, Stability and instability of periodic traveling-wave solutions for the critical Korteweg-de Vries and nonlinear Schrödinger equations,, Phys. D, 238 (2009), 603.  doi: 10.1016/j.physd.2008.12.011.  Google Scholar

[8]

J. Angulo, J. Bona and M. Scialom, Stability of cnoidal waves,, Adv. Differential Equations, 11 (2006), 1321.   Google Scholar

[9]

T. Benjamin, Lectures on nonlinear wave motion,, Nonlinear Wave Motion, 15 (1974), 3.   Google Scholar

[10]

T. Benjamin, The stability of solitary waves,, Proc. R. Soc. Lond. Ser. A, 338 (1972), 153.   Google Scholar

[11]

T. Benjamin, J. Bona and J. Mahony, Models equations for long waves in nonlinear dispersive systems,, Philos. Trans. R. Soc. Lond. Ser. A, 272 (1972), 47.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[12]

J. Bona, On the stability theory of solitary waves,, Proc. R. Soc. Lond. Ser. A, 344 (1975), 363.  doi: 10.1098/rspa.1975.0106.  Google Scholar

[13]

J. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation,, Discrete Contin. Dyn. Syst., 23 (2009), 1241.   Google Scholar

[14]

J. Bona and H. Chen, Well-posedness for regularized nonlinear dispersive wave equations,, Discrete Contin. Dyn. Syst., 23 (2009), 1253.   Google Scholar

[15]

P. Byrd and M. Friedman, "Handbook of Elliptic Integrals for Engineers and Scientists," $2^{nd}$ edition,, Springer, (1971).   Google Scholar

[16]

K. El Dika, Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation,, Discrete Contin. Dyn. Syst., 13 (2005), 583.  doi: 10.3934/dcds.2005.13.583.  Google Scholar

[17]

T. Gallay and M. Hărăguş, Stability of small periodic waves for the nonlinear Schrödinger equation,, J. Differential Equations, 234 (2007), 544.  doi: 10.1016/j.jde.2006.12.007.  Google Scholar

[18]

T. Gallay and M. Hărăguş, Orbital stability of periodic waves for the nonlinear Schrödinger equation,, J. Dynam. Differential Equations, 19 (2007), 825.  doi: 10.1007/s10884-007-9071-4.  Google Scholar

[19]

M. Hărăguş, Stability of periodic waves for the generalized BBM equation,, Rev. Roumaine Math. Pures Appl., 53 (2008), 445.   Google Scholar

[20]

R. Iorio Jr. and V. Iorio, "Fourier Analysis and Partial Differential Equations,", Cambridge Stud. Adv. Math. \textbf{70}, 70 (2001).   Google Scholar

[21]

S. Karlin, "Total Positivity,", Stanford University Press, (1968).   Google Scholar

[22]

J. Miller and M. Weinstein, Asymptotic stability of solitary waves for the regularized long-wave equation,, Comm. Pure Appl. Math., 495 (1996), 399.  doi: 10.1002/(SICI)1097-0312(199604)49:4<399::AID-CPA4>3.0.CO;2-7.  Google Scholar

[23]

F. Natali and A. Pastor, Stability and instability of periodic standing wave solutions for some Klein-Gordon equations,, J. Math. Anal. Appl., 347 (2008), 428.  doi: 10.1016/j.jmaa.2008.06.033.  Google Scholar

[24]

E. Oberhettinger, "Fourier Expansions: A Collection of Formulas,", Academic Press, (1973).   Google Scholar

[25]

D. Peregrine, Calculations of the development of an undular bore,, J. Fluid Mech., 25 (1966), 321.  doi: 10.1017/S0022112066001678.  Google Scholar

[26]

D. Peregrine, Long waves on a beach,, J. Fluid Mech., 27 (1967), 815.  doi: 10.1017/S0022112067002605.  Google Scholar

[27]

P. Souganidis and W. Strauss, Instability of a class of dispersive solitary waves,, Proc. Roy. Soc. Edinburgh Sect. A, 114 (1990), 195.   Google Scholar

[28]

E. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces,", Princeton University Press, (1970).   Google Scholar

[29]

M. Wadati, Wave propagation in nonlinear lattice I,, J. Phys. Soc. Japan, 38 (1975), 673.  doi: 10.1143/JPSJ.38.673.  Google Scholar

[30]

M. Wadati, Wave propagation in nonlinear lattice II,, J. Phys. Soc. Japan, 38 (1975), 681.  doi: 10.1143/JPSJ.38.681.  Google Scholar

[31]

M. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation,, Comm. PDE, 12 (1987), 1133.  doi: 10.1080/03605308708820522.  Google Scholar

[32]

M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive equations,, Comm. Pure Appl. Math., 39 (1986), 51.  doi: 10.1002/cpa.3160390103.  Google Scholar

[33]

L. Zeng, Existence and stability of solitary-wave solutions of equations of Benjamin-Bona-Mahony type,, J. Differential Equations, 188 (2003), 1.  doi: 10.1016/S0022-0396(02)00061-X.  Google Scholar

show all references

References:
[1]

J. Albert, Dispersion of low-energy waves for the generalized Benjamin-Bona-Mahony equation,, J. Differential Equations, 63 (1986), 117.  doi: 10.1016/0022-0396(86)90057-4.  Google Scholar

[2]

J. Angulo, Stability of cnoidal waves to Hirota-Satsuma systems,, Mat. Contemp., 27 (2004), 189.   Google Scholar

[3]

J. Angulo, Non-linear stability of periodic traveling-wave solutions to the Schrödinger and the modified Korteweg-de Vries,, J. Differential Equations, 235 (2007), 1.  doi: 10.1016/j.jde.2007.01.003.  Google Scholar

[4]

J. Angulo, "Nonlinear Dispersive Evolution Equations: Existence and Stability of Solitary and Periodic Traveling-Waves Solutions,", Mathematical Surveys and Monographs Series (SURV), (2009).   Google Scholar

[5]

J. Angulo, C. Banquet and M. Scialom, Nonlinear stability of periodic traveling-wave solutions for the regularized Benjamin-Ono equation and BBM equation,, preprint, ().   Google Scholar

[6]

J. Angulo and F. Natali, Positivity properties of the Fourier transform and the stability of periodic traveling-wave solutions,, SIAM, 40 (2008), 1123.  doi: 10.1137/080718450.  Google Scholar

[7]

J. Angulo and F. Natali, Stability and instability of periodic traveling-wave solutions for the critical Korteweg-de Vries and nonlinear Schrödinger equations,, Phys. D, 238 (2009), 603.  doi: 10.1016/j.physd.2008.12.011.  Google Scholar

[8]

J. Angulo, J. Bona and M. Scialom, Stability of cnoidal waves,, Adv. Differential Equations, 11 (2006), 1321.   Google Scholar

[9]

T. Benjamin, Lectures on nonlinear wave motion,, Nonlinear Wave Motion, 15 (1974), 3.   Google Scholar

[10]

T. Benjamin, The stability of solitary waves,, Proc. R. Soc. Lond. Ser. A, 338 (1972), 153.   Google Scholar

[11]

T. Benjamin, J. Bona and J. Mahony, Models equations for long waves in nonlinear dispersive systems,, Philos. Trans. R. Soc. Lond. Ser. A, 272 (1972), 47.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[12]

J. Bona, On the stability theory of solitary waves,, Proc. R. Soc. Lond. Ser. A, 344 (1975), 363.  doi: 10.1098/rspa.1975.0106.  Google Scholar

[13]

J. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation,, Discrete Contin. Dyn. Syst., 23 (2009), 1241.   Google Scholar

[14]

J. Bona and H. Chen, Well-posedness for regularized nonlinear dispersive wave equations,, Discrete Contin. Dyn. Syst., 23 (2009), 1253.   Google Scholar

[15]

P. Byrd and M. Friedman, "Handbook of Elliptic Integrals for Engineers and Scientists," $2^{nd}$ edition,, Springer, (1971).   Google Scholar

[16]

K. El Dika, Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation,, Discrete Contin. Dyn. Syst., 13 (2005), 583.  doi: 10.3934/dcds.2005.13.583.  Google Scholar

[17]

T. Gallay and M. Hărăguş, Stability of small periodic waves for the nonlinear Schrödinger equation,, J. Differential Equations, 234 (2007), 544.  doi: 10.1016/j.jde.2006.12.007.  Google Scholar

[18]

T. Gallay and M. Hărăguş, Orbital stability of periodic waves for the nonlinear Schrödinger equation,, J. Dynam. Differential Equations, 19 (2007), 825.  doi: 10.1007/s10884-007-9071-4.  Google Scholar

[19]

M. Hărăguş, Stability of periodic waves for the generalized BBM equation,, Rev. Roumaine Math. Pures Appl., 53 (2008), 445.   Google Scholar

[20]

R. Iorio Jr. and V. Iorio, "Fourier Analysis and Partial Differential Equations,", Cambridge Stud. Adv. Math. \textbf{70}, 70 (2001).   Google Scholar

[21]

S. Karlin, "Total Positivity,", Stanford University Press, (1968).   Google Scholar

[22]

J. Miller and M. Weinstein, Asymptotic stability of solitary waves for the regularized long-wave equation,, Comm. Pure Appl. Math., 495 (1996), 399.  doi: 10.1002/(SICI)1097-0312(199604)49:4<399::AID-CPA4>3.0.CO;2-7.  Google Scholar

[23]

F. Natali and A. Pastor, Stability and instability of periodic standing wave solutions for some Klein-Gordon equations,, J. Math. Anal. Appl., 347 (2008), 428.  doi: 10.1016/j.jmaa.2008.06.033.  Google Scholar

[24]

E. Oberhettinger, "Fourier Expansions: A Collection of Formulas,", Academic Press, (1973).   Google Scholar

[25]

D. Peregrine, Calculations of the development of an undular bore,, J. Fluid Mech., 25 (1966), 321.  doi: 10.1017/S0022112066001678.  Google Scholar

[26]

D. Peregrine, Long waves on a beach,, J. Fluid Mech., 27 (1967), 815.  doi: 10.1017/S0022112067002605.  Google Scholar

[27]

P. Souganidis and W. Strauss, Instability of a class of dispersive solitary waves,, Proc. Roy. Soc. Edinburgh Sect. A, 114 (1990), 195.   Google Scholar

[28]

E. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces,", Princeton University Press, (1970).   Google Scholar

[29]

M. Wadati, Wave propagation in nonlinear lattice I,, J. Phys. Soc. Japan, 38 (1975), 673.  doi: 10.1143/JPSJ.38.673.  Google Scholar

[30]

M. Wadati, Wave propagation in nonlinear lattice II,, J. Phys. Soc. Japan, 38 (1975), 681.  doi: 10.1143/JPSJ.38.681.  Google Scholar

[31]

M. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation,, Comm. PDE, 12 (1987), 1133.  doi: 10.1080/03605308708820522.  Google Scholar

[32]

M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive equations,, Comm. Pure Appl. Math., 39 (1986), 51.  doi: 10.1002/cpa.3160390103.  Google Scholar

[33]

L. Zeng, Existence and stability of solitary-wave solutions of equations of Benjamin-Bona-Mahony type,, J. Differential Equations, 188 (2003), 1.  doi: 10.1016/S0022-0396(02)00061-X.  Google Scholar

[1]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[2]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[3]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[4]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[5]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[6]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[7]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[8]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[9]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[10]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[11]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[13]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[14]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[15]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[16]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[17]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[18]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[19]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[20]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (77)
  • HTML views (0)
  • Cited by (8)

[Back to Top]