August  2011, 30(3): 851-871. doi: 10.3934/dcds.2011.30.851

Stability for the modified and fourth-order Benjamin-Bona-Mahony equations

1. 

Department of Mathematics, IME-USP, Rua do Matão 1010, Cidade Universitária, CEP 05508-090, São Paulo, SP, Brazil

2. 

Department of Mathematics, IMECC-UNICAMP, Rua Sérgio Buarque de Holanda 651, CEP 13083-859, Campinas, SP, Brazil, Brazil

Received  November 2009 Revised  December 2010 Published  March 2011

In this work we establish new results about the existence of smooth, explicit families of periodic traveling waves for the modified and fourth-order Benjamin-Bona-Mahony equations. We also prove, under certain conditions, that these families are nonlinearly stable in the energy space. The techniques employed may be of further use in the study of the stability of periodic traveling-wave solutions of other nonlinear evolution equations.
Citation: Jaime Angulo Pava, Carlos Banquet, Márcia Scialom. Stability for the modified and fourth-order Benjamin-Bona-Mahony equations. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 851-871. doi: 10.3934/dcds.2011.30.851
References:
[1]

J. Albert, Dispersion of low-energy waves for the generalized Benjamin-Bona-Mahony equation,, J. Differential Equations, 63 (1986), 117.  doi: 10.1016/0022-0396(86)90057-4.  Google Scholar

[2]

J. Angulo, Stability of cnoidal waves to Hirota-Satsuma systems,, Mat. Contemp., 27 (2004), 189.   Google Scholar

[3]

J. Angulo, Non-linear stability of periodic traveling-wave solutions to the Schrödinger and the modified Korteweg-de Vries,, J. Differential Equations, 235 (2007), 1.  doi: 10.1016/j.jde.2007.01.003.  Google Scholar

[4]

J. Angulo, "Nonlinear Dispersive Evolution Equations: Existence and Stability of Solitary and Periodic Traveling-Waves Solutions,", Mathematical Surveys and Monographs Series (SURV), (2009).   Google Scholar

[5]

J. Angulo, C. Banquet and M. Scialom, Nonlinear stability of periodic traveling-wave solutions for the regularized Benjamin-Ono equation and BBM equation,, preprint, ().   Google Scholar

[6]

J. Angulo and F. Natali, Positivity properties of the Fourier transform and the stability of periodic traveling-wave solutions,, SIAM, 40 (2008), 1123.  doi: 10.1137/080718450.  Google Scholar

[7]

J. Angulo and F. Natali, Stability and instability of periodic traveling-wave solutions for the critical Korteweg-de Vries and nonlinear Schrödinger equations,, Phys. D, 238 (2009), 603.  doi: 10.1016/j.physd.2008.12.011.  Google Scholar

[8]

J. Angulo, J. Bona and M. Scialom, Stability of cnoidal waves,, Adv. Differential Equations, 11 (2006), 1321.   Google Scholar

[9]

T. Benjamin, Lectures on nonlinear wave motion,, Nonlinear Wave Motion, 15 (1974), 3.   Google Scholar

[10]

T. Benjamin, The stability of solitary waves,, Proc. R. Soc. Lond. Ser. A, 338 (1972), 153.   Google Scholar

[11]

T. Benjamin, J. Bona and J. Mahony, Models equations for long waves in nonlinear dispersive systems,, Philos. Trans. R. Soc. Lond. Ser. A, 272 (1972), 47.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[12]

J. Bona, On the stability theory of solitary waves,, Proc. R. Soc. Lond. Ser. A, 344 (1975), 363.  doi: 10.1098/rspa.1975.0106.  Google Scholar

[13]

J. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation,, Discrete Contin. Dyn. Syst., 23 (2009), 1241.   Google Scholar

[14]

J. Bona and H. Chen, Well-posedness for regularized nonlinear dispersive wave equations,, Discrete Contin. Dyn. Syst., 23 (2009), 1253.   Google Scholar

[15]

P. Byrd and M. Friedman, "Handbook of Elliptic Integrals for Engineers and Scientists," $2^{nd}$ edition,, Springer, (1971).   Google Scholar

[16]

K. El Dika, Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation,, Discrete Contin. Dyn. Syst., 13 (2005), 583.  doi: 10.3934/dcds.2005.13.583.  Google Scholar

[17]

T. Gallay and M. Hărăguş, Stability of small periodic waves for the nonlinear Schrödinger equation,, J. Differential Equations, 234 (2007), 544.  doi: 10.1016/j.jde.2006.12.007.  Google Scholar

[18]

T. Gallay and M. Hărăguş, Orbital stability of periodic waves for the nonlinear Schrödinger equation,, J. Dynam. Differential Equations, 19 (2007), 825.  doi: 10.1007/s10884-007-9071-4.  Google Scholar

[19]

M. Hărăguş, Stability of periodic waves for the generalized BBM equation,, Rev. Roumaine Math. Pures Appl., 53 (2008), 445.   Google Scholar

[20]

R. Iorio Jr. and V. Iorio, "Fourier Analysis and Partial Differential Equations,", Cambridge Stud. Adv. Math. \textbf{70}, 70 (2001).   Google Scholar

[21]

S. Karlin, "Total Positivity,", Stanford University Press, (1968).   Google Scholar

[22]

J. Miller and M. Weinstein, Asymptotic stability of solitary waves for the regularized long-wave equation,, Comm. Pure Appl. Math., 495 (1996), 399.  doi: 10.1002/(SICI)1097-0312(199604)49:4<399::AID-CPA4>3.0.CO;2-7.  Google Scholar

[23]

F. Natali and A. Pastor, Stability and instability of periodic standing wave solutions for some Klein-Gordon equations,, J. Math. Anal. Appl., 347 (2008), 428.  doi: 10.1016/j.jmaa.2008.06.033.  Google Scholar

[24]

E. Oberhettinger, "Fourier Expansions: A Collection of Formulas,", Academic Press, (1973).   Google Scholar

[25]

D. Peregrine, Calculations of the development of an undular bore,, J. Fluid Mech., 25 (1966), 321.  doi: 10.1017/S0022112066001678.  Google Scholar

[26]

D. Peregrine, Long waves on a beach,, J. Fluid Mech., 27 (1967), 815.  doi: 10.1017/S0022112067002605.  Google Scholar

[27]

P. Souganidis and W. Strauss, Instability of a class of dispersive solitary waves,, Proc. Roy. Soc. Edinburgh Sect. A, 114 (1990), 195.   Google Scholar

[28]

E. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces,", Princeton University Press, (1970).   Google Scholar

[29]

M. Wadati, Wave propagation in nonlinear lattice I,, J. Phys. Soc. Japan, 38 (1975), 673.  doi: 10.1143/JPSJ.38.673.  Google Scholar

[30]

M. Wadati, Wave propagation in nonlinear lattice II,, J. Phys. Soc. Japan, 38 (1975), 681.  doi: 10.1143/JPSJ.38.681.  Google Scholar

[31]

M. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation,, Comm. PDE, 12 (1987), 1133.  doi: 10.1080/03605308708820522.  Google Scholar

[32]

M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive equations,, Comm. Pure Appl. Math., 39 (1986), 51.  doi: 10.1002/cpa.3160390103.  Google Scholar

[33]

L. Zeng, Existence and stability of solitary-wave solutions of equations of Benjamin-Bona-Mahony type,, J. Differential Equations, 188 (2003), 1.  doi: 10.1016/S0022-0396(02)00061-X.  Google Scholar

show all references

References:
[1]

J. Albert, Dispersion of low-energy waves for the generalized Benjamin-Bona-Mahony equation,, J. Differential Equations, 63 (1986), 117.  doi: 10.1016/0022-0396(86)90057-4.  Google Scholar

[2]

J. Angulo, Stability of cnoidal waves to Hirota-Satsuma systems,, Mat. Contemp., 27 (2004), 189.   Google Scholar

[3]

J. Angulo, Non-linear stability of periodic traveling-wave solutions to the Schrödinger and the modified Korteweg-de Vries,, J. Differential Equations, 235 (2007), 1.  doi: 10.1016/j.jde.2007.01.003.  Google Scholar

[4]

J. Angulo, "Nonlinear Dispersive Evolution Equations: Existence and Stability of Solitary and Periodic Traveling-Waves Solutions,", Mathematical Surveys and Monographs Series (SURV), (2009).   Google Scholar

[5]

J. Angulo, C. Banquet and M. Scialom, Nonlinear stability of periodic traveling-wave solutions for the regularized Benjamin-Ono equation and BBM equation,, preprint, ().   Google Scholar

[6]

J. Angulo and F. Natali, Positivity properties of the Fourier transform and the stability of periodic traveling-wave solutions,, SIAM, 40 (2008), 1123.  doi: 10.1137/080718450.  Google Scholar

[7]

J. Angulo and F. Natali, Stability and instability of periodic traveling-wave solutions for the critical Korteweg-de Vries and nonlinear Schrödinger equations,, Phys. D, 238 (2009), 603.  doi: 10.1016/j.physd.2008.12.011.  Google Scholar

[8]

J. Angulo, J. Bona and M. Scialom, Stability of cnoidal waves,, Adv. Differential Equations, 11 (2006), 1321.   Google Scholar

[9]

T. Benjamin, Lectures on nonlinear wave motion,, Nonlinear Wave Motion, 15 (1974), 3.   Google Scholar

[10]

T. Benjamin, The stability of solitary waves,, Proc. R. Soc. Lond. Ser. A, 338 (1972), 153.   Google Scholar

[11]

T. Benjamin, J. Bona and J. Mahony, Models equations for long waves in nonlinear dispersive systems,, Philos. Trans. R. Soc. Lond. Ser. A, 272 (1972), 47.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[12]

J. Bona, On the stability theory of solitary waves,, Proc. R. Soc. Lond. Ser. A, 344 (1975), 363.  doi: 10.1098/rspa.1975.0106.  Google Scholar

[13]

J. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation,, Discrete Contin. Dyn. Syst., 23 (2009), 1241.   Google Scholar

[14]

J. Bona and H. Chen, Well-posedness for regularized nonlinear dispersive wave equations,, Discrete Contin. Dyn. Syst., 23 (2009), 1253.   Google Scholar

[15]

P. Byrd and M. Friedman, "Handbook of Elliptic Integrals for Engineers and Scientists," $2^{nd}$ edition,, Springer, (1971).   Google Scholar

[16]

K. El Dika, Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation,, Discrete Contin. Dyn. Syst., 13 (2005), 583.  doi: 10.3934/dcds.2005.13.583.  Google Scholar

[17]

T. Gallay and M. Hărăguş, Stability of small periodic waves for the nonlinear Schrödinger equation,, J. Differential Equations, 234 (2007), 544.  doi: 10.1016/j.jde.2006.12.007.  Google Scholar

[18]

T. Gallay and M. Hărăguş, Orbital stability of periodic waves for the nonlinear Schrödinger equation,, J. Dynam. Differential Equations, 19 (2007), 825.  doi: 10.1007/s10884-007-9071-4.  Google Scholar

[19]

M. Hărăguş, Stability of periodic waves for the generalized BBM equation,, Rev. Roumaine Math. Pures Appl., 53 (2008), 445.   Google Scholar

[20]

R. Iorio Jr. and V. Iorio, "Fourier Analysis and Partial Differential Equations,", Cambridge Stud. Adv. Math. \textbf{70}, 70 (2001).   Google Scholar

[21]

S. Karlin, "Total Positivity,", Stanford University Press, (1968).   Google Scholar

[22]

J. Miller and M. Weinstein, Asymptotic stability of solitary waves for the regularized long-wave equation,, Comm. Pure Appl. Math., 495 (1996), 399.  doi: 10.1002/(SICI)1097-0312(199604)49:4<399::AID-CPA4>3.0.CO;2-7.  Google Scholar

[23]

F. Natali and A. Pastor, Stability and instability of periodic standing wave solutions for some Klein-Gordon equations,, J. Math. Anal. Appl., 347 (2008), 428.  doi: 10.1016/j.jmaa.2008.06.033.  Google Scholar

[24]

E. Oberhettinger, "Fourier Expansions: A Collection of Formulas,", Academic Press, (1973).   Google Scholar

[25]

D. Peregrine, Calculations of the development of an undular bore,, J. Fluid Mech., 25 (1966), 321.  doi: 10.1017/S0022112066001678.  Google Scholar

[26]

D. Peregrine, Long waves on a beach,, J. Fluid Mech., 27 (1967), 815.  doi: 10.1017/S0022112067002605.  Google Scholar

[27]

P. Souganidis and W. Strauss, Instability of a class of dispersive solitary waves,, Proc. Roy. Soc. Edinburgh Sect. A, 114 (1990), 195.   Google Scholar

[28]

E. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces,", Princeton University Press, (1970).   Google Scholar

[29]

M. Wadati, Wave propagation in nonlinear lattice I,, J. Phys. Soc. Japan, 38 (1975), 673.  doi: 10.1143/JPSJ.38.673.  Google Scholar

[30]

M. Wadati, Wave propagation in nonlinear lattice II,, J. Phys. Soc. Japan, 38 (1975), 681.  doi: 10.1143/JPSJ.38.681.  Google Scholar

[31]

M. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation,, Comm. PDE, 12 (1987), 1133.  doi: 10.1080/03605308708820522.  Google Scholar

[32]

M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive equations,, Comm. Pure Appl. Math., 39 (1986), 51.  doi: 10.1002/cpa.3160390103.  Google Scholar

[33]

L. Zeng, Existence and stability of solitary-wave solutions of equations of Benjamin-Bona-Mahony type,, J. Differential Equations, 188 (2003), 1.  doi: 10.1016/S0022-0396(02)00061-X.  Google Scholar

[1]

Xianbo Sun, Pei Yu. Periodic traveling waves in a generalized BBM equation with weak backward diffusion and dissipation terms. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 965-987. doi: 10.3934/dcdsb.2018341

[2]

Amin Esfahani. Remarks on a two dimensional BBM type equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1111-1127. doi: 10.3934/cpaa.2012.11.1111

[3]

Mahendra Panthee. On the ill-posedness result for the BBM equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 253-259. doi: 10.3934/dcds.2011.30.253

[4]

Xavier Carvajal, Mahendra Panthee. On ill-posedness for the generalized BBM equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4565-4576. doi: 10.3934/dcds.2014.34.4565

[5]

Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241

[6]

Yvan Martel, Frank Merle. Inelastic interaction of nearly equal solitons for the BBM equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 487-532. doi: 10.3934/dcds.2010.27.487

[7]

Aslihan Demirkaya, Milena Stanislavova. Numerical results on existence and stability of standing and traveling waves for the fourth order beam equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 197-209. doi: 10.3934/dcdsb.2018097

[8]

Jean-Paul Chehab, Pierre Garnier, Youcef Mammeri. Long-time behavior of solutions of a BBM equation with generalized damping. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1897-1915. doi: 10.3934/dcdsb.2015.20.1897

[9]

Khaled El Dika. Smoothing effect of the generalized BBM equation for localized solutions moving to the right. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 973-982. doi: 10.3934/dcds.2005.12.973

[10]

Jerry L. Bona, Hongqiu Chen, Chun-Hsiung Hsia. Well-posedness for the BBM-equation in a quarter plane. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1149-1163. doi: 10.3934/dcdss.2014.7.1149

[11]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[12]

Hua Chen, Ling-Jun Wang. A perturbation approach for the transverse spectral stability of small periodic traveling waves of the ZK equation. Kinetic & Related Models, 2012, 5 (2) : 261-281. doi: 10.3934/krm.2012.5.261

[13]

Minoru Murai, Kunimochi Sakamoto, Shoji Yotsutani. Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition. Conference Publications, 2015, 2015 (special) : 878-900. doi: 10.3934/proc.2015.0878

[14]

Chunhua Jin, Jingxue Yin, Zejia Wang. Positive periodic solutions to a nonlinear fourth-order differential equation. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1225-1235. doi: 10.3934/cpaa.2008.7.1225

[15]

Jerry Bona, Hongqiu Chen, Shu Ming Sun, B.-Y. Zhang. Comparison of quarter-plane and two-point boundary value problems: the BBM-equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 921-940. doi: 10.3934/dcds.2005.13.921

[16]

Ming Wang. Sharp global well-posedness of the BBM equation in $L^p$ type Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5763-5788. doi: 10.3934/dcds.2016053

[17]

Justin Forlano. Almost sure global well posedness for the BBM equation with infinite $ L^{2} $ initial data. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 267-318. doi: 10.3934/dcds.2020011

[18]

Rafael Ortega. Stability and index of periodic solutions of a nonlinear telegraph equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 823-837. doi: 10.3934/cpaa.2005.4.823

[19]

Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093

[20]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (7)

[Back to Top]