August  2011, 30(3): 851-871. doi: 10.3934/dcds.2011.30.851

Stability for the modified and fourth-order Benjamin-Bona-Mahony equations

1. 

Department of Mathematics, IME-USP, Rua do Matão 1010, Cidade Universitária, CEP 05508-090, São Paulo, SP, Brazil

2. 

Department of Mathematics, IMECC-UNICAMP, Rua Sérgio Buarque de Holanda 651, CEP 13083-859, Campinas, SP, Brazil, Brazil

Received  November 2009 Revised  December 2010 Published  March 2011

In this work we establish new results about the existence of smooth, explicit families of periodic traveling waves for the modified and fourth-order Benjamin-Bona-Mahony equations. We also prove, under certain conditions, that these families are nonlinearly stable in the energy space. The techniques employed may be of further use in the study of the stability of periodic traveling-wave solutions of other nonlinear evolution equations.
Citation: Jaime Angulo Pava, Carlos Banquet, Márcia Scialom. Stability for the modified and fourth-order Benjamin-Bona-Mahony equations. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 851-871. doi: 10.3934/dcds.2011.30.851
References:
[1]

J. Albert, Dispersion of low-energy waves for the generalized Benjamin-Bona-Mahony equation, J. Differential Equations, 63 (1986), 117-134. doi: 10.1016/0022-0396(86)90057-4.

[2]

J. Angulo, Stability of cnoidal waves to Hirota-Satsuma systems, Mat. Contemp., 27 (2004), 189-223.

[3]

J. Angulo, Non-linear stability of periodic traveling-wave solutions to the Schrödinger and the modified Korteweg-de Vries, J. Differential Equations, 235 (2007), 1-30. doi: 10.1016/j.jde.2007.01.003.

[4]

J. Angulo, "Nonlinear Dispersive Evolution Equations: Existence and Stability of Solitary and Periodic Traveling-Waves Solutions," Mathematical Surveys and Monographs Series (SURV), 156, American Mathematical Society, Providence, RI, 2009.

[5]

J. Angulo, C. Banquet and M. Scialom, Nonlinear stability of periodic traveling-wave solutions for the regularized Benjamin-Ono equation and BBM equation,, preprint, (). 

[6]

J. Angulo and F. Natali, Positivity properties of the Fourier transform and the stability of periodic traveling-wave solutions, SIAM, J. Math. Anal., 40 (2008), 1123-1151. doi: 10.1137/080718450.

[7]

J. Angulo and F. Natali, Stability and instability of periodic traveling-wave solutions for the critical Korteweg-de Vries and nonlinear Schrödinger equations, Phys. D, 238 (2009), 603-621. doi: 10.1016/j.physd.2008.12.011.

[8]

J. Angulo, J. Bona and M. Scialom, Stability of cnoidal waves, Adv. Differential Equations, 11 (2006), 1321-1374.

[9]

T. Benjamin, Lectures on nonlinear wave motion, Nonlinear Wave Motion, AMS, Providence, R. I., 15 (1974), 3-47.

[10]

T. Benjamin, The stability of solitary waves, Proc. R. Soc. Lond. Ser. A, 338 (1972), 153-183.

[11]

T. Benjamin, J. Bona and J. Mahony, Models equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond. Ser. A, 272 (1972), 47-78. doi: 10.1098/rsta.1972.0032.

[12]

J. Bona, On the stability theory of solitary waves, Proc. R. Soc. Lond. Ser. A, 344 (1975), 363-374. doi: 10.1098/rspa.1975.0106.

[13]

J. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation, Discrete Contin. Dyn. Syst., 23 (2009), 1241-1252.

[14]

J. Bona and H. Chen, Well-posedness for regularized nonlinear dispersive wave equations, Discrete Contin. Dyn. Syst., 23 (2009), 1253-1275.

[15]

P. Byrd and M. Friedman, "Handbook of Elliptic Integrals for Engineers and Scientists," $2^{nd}$ edition, Springer, NY, 1971.

[16]

K. El Dika, Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation, Discrete Contin. Dyn. Syst., 13 (2005), 583-622. doi: 10.3934/dcds.2005.13.583.

[17]

T. Gallay and M. Hărăguş, Stability of small periodic waves for the nonlinear Schrödinger equation, J. Differential Equations, 234 (2007), 544-581. doi: 10.1016/j.jde.2006.12.007.

[18]

T. Gallay and M. Hărăguş, Orbital stability of periodic waves for the nonlinear Schrödinger equation, J. Dynam. Differential Equations, 19 (2007), 825-865. doi: 10.1007/s10884-007-9071-4.

[19]

M. Hărăguş, Stability of periodic waves for the generalized BBM equation, Rev. Roumaine Math. Pures Appl., 53 (2008), 445-463.

[20]

R. Iorio Jr. and V. Iorio, "Fourier Analysis and Partial Differential Equations," Cambridge Stud. Adv. Math. 70, Cambridge University Press, Cambridge, UK, 2001.

[21]

S. Karlin, "Total Positivity," Stanford University Press, 1968.

[22]

J. Miller and M. Weinstein, Asymptotic stability of solitary waves for the regularized long-wave equation, Comm. Pure Appl. Math., 495 (1996), 399-441. doi: 10.1002/(SICI)1097-0312(199604)49:4<399::AID-CPA4>3.0.CO;2-7.

[23]

F. Natali and A. Pastor, Stability and instability of periodic standing wave solutions for some Klein-Gordon equations, J. Math. Anal. Appl., 347 (2008), 428-441. doi: 10.1016/j.jmaa.2008.06.033.

[24]

E. Oberhettinger, "Fourier Expansions: A Collection of Formulas," Academic Press, New York, London, 1973.

[25]

D. Peregrine, Calculations of the development of an undular bore, J. Fluid Mech., 25 (1966), 321-330. doi: 10.1017/S0022112066001678.

[26]

D. Peregrine, Long waves on a beach, J. Fluid Mech., 27 (1967), 815-827. doi: 10.1017/S0022112067002605.

[27]

P. Souganidis and W. Strauss, Instability of a class of dispersive solitary waves, Proc. Roy. Soc. Edinburgh Sect. A, 114 (1990), 195-212.

[28]

E. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces," Princeton University Press, Princeton, N. J., 1970.

[29]

M. Wadati, Wave propagation in nonlinear lattice I, J. Phys. Soc. Japan, 38 (1975), 673-680. doi: 10.1143/JPSJ.38.673.

[30]

M. Wadati, Wave propagation in nonlinear lattice II, J. Phys. Soc. Japan, 38 (1975), 681-686. doi: 10.1143/JPSJ.38.681.

[31]

M. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation, Comm. PDE, 12 (1987), 1133-1173. doi: 10.1080/03605308708820522.

[32]

M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive equations, Comm. Pure Appl. Math., 39 (1986), 51-68. doi: 10.1002/cpa.3160390103.

[33]

L. Zeng, Existence and stability of solitary-wave solutions of equations of Benjamin-Bona-Mahony type, J. Differential Equations, 188 (2003), 1-32. doi: 10.1016/S0022-0396(02)00061-X.

show all references

References:
[1]

J. Albert, Dispersion of low-energy waves for the generalized Benjamin-Bona-Mahony equation, J. Differential Equations, 63 (1986), 117-134. doi: 10.1016/0022-0396(86)90057-4.

[2]

J. Angulo, Stability of cnoidal waves to Hirota-Satsuma systems, Mat. Contemp., 27 (2004), 189-223.

[3]

J. Angulo, Non-linear stability of periodic traveling-wave solutions to the Schrödinger and the modified Korteweg-de Vries, J. Differential Equations, 235 (2007), 1-30. doi: 10.1016/j.jde.2007.01.003.

[4]

J. Angulo, "Nonlinear Dispersive Evolution Equations: Existence and Stability of Solitary and Periodic Traveling-Waves Solutions," Mathematical Surveys and Monographs Series (SURV), 156, American Mathematical Society, Providence, RI, 2009.

[5]

J. Angulo, C. Banquet and M. Scialom, Nonlinear stability of periodic traveling-wave solutions for the regularized Benjamin-Ono equation and BBM equation,, preprint, (). 

[6]

J. Angulo and F. Natali, Positivity properties of the Fourier transform and the stability of periodic traveling-wave solutions, SIAM, J. Math. Anal., 40 (2008), 1123-1151. doi: 10.1137/080718450.

[7]

J. Angulo and F. Natali, Stability and instability of periodic traveling-wave solutions for the critical Korteweg-de Vries and nonlinear Schrödinger equations, Phys. D, 238 (2009), 603-621. doi: 10.1016/j.physd.2008.12.011.

[8]

J. Angulo, J. Bona and M. Scialom, Stability of cnoidal waves, Adv. Differential Equations, 11 (2006), 1321-1374.

[9]

T. Benjamin, Lectures on nonlinear wave motion, Nonlinear Wave Motion, AMS, Providence, R. I., 15 (1974), 3-47.

[10]

T. Benjamin, The stability of solitary waves, Proc. R. Soc. Lond. Ser. A, 338 (1972), 153-183.

[11]

T. Benjamin, J. Bona and J. Mahony, Models equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond. Ser. A, 272 (1972), 47-78. doi: 10.1098/rsta.1972.0032.

[12]

J. Bona, On the stability theory of solitary waves, Proc. R. Soc. Lond. Ser. A, 344 (1975), 363-374. doi: 10.1098/rspa.1975.0106.

[13]

J. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation, Discrete Contin. Dyn. Syst., 23 (2009), 1241-1252.

[14]

J. Bona and H. Chen, Well-posedness for regularized nonlinear dispersive wave equations, Discrete Contin. Dyn. Syst., 23 (2009), 1253-1275.

[15]

P. Byrd and M. Friedman, "Handbook of Elliptic Integrals for Engineers and Scientists," $2^{nd}$ edition, Springer, NY, 1971.

[16]

K. El Dika, Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation, Discrete Contin. Dyn. Syst., 13 (2005), 583-622. doi: 10.3934/dcds.2005.13.583.

[17]

T. Gallay and M. Hărăguş, Stability of small periodic waves for the nonlinear Schrödinger equation, J. Differential Equations, 234 (2007), 544-581. doi: 10.1016/j.jde.2006.12.007.

[18]

T. Gallay and M. Hărăguş, Orbital stability of periodic waves for the nonlinear Schrödinger equation, J. Dynam. Differential Equations, 19 (2007), 825-865. doi: 10.1007/s10884-007-9071-4.

[19]

M. Hărăguş, Stability of periodic waves for the generalized BBM equation, Rev. Roumaine Math. Pures Appl., 53 (2008), 445-463.

[20]

R. Iorio Jr. and V. Iorio, "Fourier Analysis and Partial Differential Equations," Cambridge Stud. Adv. Math. 70, Cambridge University Press, Cambridge, UK, 2001.

[21]

S. Karlin, "Total Positivity," Stanford University Press, 1968.

[22]

J. Miller and M. Weinstein, Asymptotic stability of solitary waves for the regularized long-wave equation, Comm. Pure Appl. Math., 495 (1996), 399-441. doi: 10.1002/(SICI)1097-0312(199604)49:4<399::AID-CPA4>3.0.CO;2-7.

[23]

F. Natali and A. Pastor, Stability and instability of periodic standing wave solutions for some Klein-Gordon equations, J. Math. Anal. Appl., 347 (2008), 428-441. doi: 10.1016/j.jmaa.2008.06.033.

[24]

E. Oberhettinger, "Fourier Expansions: A Collection of Formulas," Academic Press, New York, London, 1973.

[25]

D. Peregrine, Calculations of the development of an undular bore, J. Fluid Mech., 25 (1966), 321-330. doi: 10.1017/S0022112066001678.

[26]

D. Peregrine, Long waves on a beach, J. Fluid Mech., 27 (1967), 815-827. doi: 10.1017/S0022112067002605.

[27]

P. Souganidis and W. Strauss, Instability of a class of dispersive solitary waves, Proc. Roy. Soc. Edinburgh Sect. A, 114 (1990), 195-212.

[28]

E. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces," Princeton University Press, Princeton, N. J., 1970.

[29]

M. Wadati, Wave propagation in nonlinear lattice I, J. Phys. Soc. Japan, 38 (1975), 673-680. doi: 10.1143/JPSJ.38.673.

[30]

M. Wadati, Wave propagation in nonlinear lattice II, J. Phys. Soc. Japan, 38 (1975), 681-686. doi: 10.1143/JPSJ.38.681.

[31]

M. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation, Comm. PDE, 12 (1987), 1133-1173. doi: 10.1080/03605308708820522.

[32]

M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive equations, Comm. Pure Appl. Math., 39 (1986), 51-68. doi: 10.1002/cpa.3160390103.

[33]

L. Zeng, Existence and stability of solitary-wave solutions of equations of Benjamin-Bona-Mahony type, J. Differential Equations, 188 (2003), 1-32. doi: 10.1016/S0022-0396(02)00061-X.

[1]

Lina Guo, Yulin Zhao. Existence of periodic waves for a perturbed quintic BBM equation. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4689-4703. doi: 10.3934/dcds.2020198

[2]

Xianbo Sun, Pei Yu. Periodic traveling waves in a generalized BBM equation with weak backward diffusion and dissipation terms. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 965-987. doi: 10.3934/dcdsb.2018341

[3]

Melek Jellouli. On the controllability of the BBM equation. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022002

[4]

Amin Esfahani. Remarks on a two dimensional BBM type equation. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1111-1127. doi: 10.3934/cpaa.2012.11.1111

[5]

Mahendra Panthee. On the ill-posedness result for the BBM equation. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 253-259. doi: 10.3934/dcds.2011.30.253

[6]

Xavier Carvajal, Mahendra Panthee. On ill-posedness for the generalized BBM equation. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4565-4576. doi: 10.3934/dcds.2014.34.4565

[7]

Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241

[8]

Yvan Martel, Frank Merle. Inelastic interaction of nearly equal solitons for the BBM equation. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 487-532. doi: 10.3934/dcds.2010.27.487

[9]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5321-5335. doi: 10.3934/dcdsb.2020345

[10]

Aslihan Demirkaya, Milena Stanislavova. Numerical results on existence and stability of standing and traveling waves for the fourth order beam equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 197-209. doi: 10.3934/dcdsb.2018097

[11]

Jean-Paul Chehab, Pierre Garnier, Youcef Mammeri. Long-time behavior of solutions of a BBM equation with generalized damping. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1897-1915. doi: 10.3934/dcdsb.2015.20.1897

[12]

Khaled El Dika. Smoothing effect of the generalized BBM equation for localized solutions moving to the right. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 973-982. doi: 10.3934/dcds.2005.12.973

[13]

Jerry L. Bona, Hongqiu Chen, Chun-Hsiung Hsia. Well-posedness for the BBM-equation in a quarter plane. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1149-1163. doi: 10.3934/dcdss.2014.7.1149

[14]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure and Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[15]

Hua Chen, Ling-Jun Wang. A perturbation approach for the transverse spectral stability of small periodic traveling waves of the ZK equation. Kinetic and Related Models, 2012, 5 (2) : 261-281. doi: 10.3934/krm.2012.5.261

[16]

Minoru Murai, Kunimochi Sakamoto, Shoji Yotsutani. Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition. Conference Publications, 2015, 2015 (special) : 878-900. doi: 10.3934/proc.2015.0878

[17]

Jerry Bona, Hongqiu Chen, Shu Ming Sun, B.-Y. Zhang. Comparison of quarter-plane and two-point boundary value problems: the BBM-equation. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 921-940. doi: 10.3934/dcds.2005.13.921

[18]

Justin Forlano. Almost sure global well posedness for the BBM equation with infinite $ L^{2} $ initial data. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 267-318. doi: 10.3934/dcds.2020011

[19]

Ming Wang. Sharp global well-posedness of the BBM equation in $L^p$ type Sobolev spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5763-5788. doi: 10.3934/dcds.2016053

[20]

Chunhua Jin, Jingxue Yin, Zejia Wang. Positive periodic solutions to a nonlinear fourth-order differential equation. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1225-1235. doi: 10.3934/cpaa.2008.7.1225

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (157)
  • HTML views (0)
  • Cited by (9)

[Back to Top]