August  2011, 30(3): 891-916. doi: 10.3934/dcds.2011.30.891

Uniqueness and nonuniqueness of solutions to parabolic problems with singular coefficients

1. 

Dipartimento di Matematica "G. Castelnuovo", Università di Roma "La Sapienza", P.le A. Moro 5, I-00185 Roma, Italy

2. 

Dipartimento di Matematica “G. Castelnuovo”, Università di Roma “La Sapienza”, P.le A. Moro 5, I-00185 Roma

Received  April 2010 Revised  December 2010 Published  March 2011

Uniqueness and nonuniqueness of solutions to the first initial-boundary value problem for degenerate semilinear parabolic equations, with possibly unbounded coefficients, are studied. Sub- and supersolutions of suitable auxiliary problems, such as the first exit time problem, are used to determine on which part of the boundary Dirichlet data must be given. As an application of the general results, we study uniqueness and nonuniqueness of bounded solutions to a semilinear Cauchy problem in the hyperbolic space $\mathbb{H}^n$ using the Poincaré model.
Citation: Maria Assunta Pozio, Fabio Punzo, Alberto Tesei. Uniqueness and nonuniqueness of solutions to parabolic problems with singular coefficients. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 891-916. doi: 10.3934/dcds.2011.30.891
References:
[1]

C. Bandle, V. Moroz and W. Reichel, "Boundary blowup'' type sub-solutions to semilinear elliptic equations with Hardy potential,, J. London Math. Soc., 77 (2008), 503. doi: 10.1112/jlms/jdm104.

[2]

R. Benedetti and C. Petronio, "Lecture on Hyperbolic Geometry,'', Springer-Verlag, (1992).

[3]

H. Berestycki, L. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and the maximum principle for second-order elliptic operators in general domains,, Comm. Pure Appl. Math., 47 (1994), 47. doi: 10.1002/cpa.3160470105.

[4]

M. Bertsch, R. Dal Passo and R. Van Deer Hout, Nonuniqueness for the heat flow of harmonic maps on the disk,, Arch. Rat. Mech. Anal., 161 (2002), 93. doi: 10.1007/s002050100171.

[5]

S. Cerrai, "Second Order PDE's in Finite and Infinite Dimension. A Probabilistic Approach,'', Lecture Notes in Mathematics {\bf 1762}, 1762 (1762).

[6]

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc., 27 (1992), 1. doi: 10.1090/S0273-0979-1992-00266-5.

[7]

S. D. Eidelman, S. Kamin and F. Porper, Uniqueness of solutions of the Cauchy problem for parabolic equations degenerating at infinity,, Asympt. Anal., 22 (2000), 349.

[8]

G. Fichera, Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine,, Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I, 5 (1956), 1.

[9]

A. Friedman, "Partial Differential Equations of Parabolic Type,'', Prentice-Hall, (1964).

[10]

A. Friedman, "Stochastic Differential Equations and Applications,'' I, II,, Probability and Mathematical Statistics, 28 (1976).

[11]

I. Guikhman and A. Skorokhod, "Introduction à la Théorie des Processus Aléatoires,'', MIR Publishers, (1980).

[12]

A. Grigoryan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds,, Bull. Amer. Math. Soc., 36 (1999), 135. doi: 10.1090/S0273-0979-99-00776-4.

[13]

A. M. Il'in, A. S. Kalashnikov and O. A. Oleinik, Linear equations of the second order of parabolic type,, Russian Math. Surveys, 17 (1962), 1. doi: 10.1070/RM1962v017n03ABEH004115.

[14]

H. Ishii, On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions,, Funkc. Ekv., 38 (1995), 101.

[15]

H. Ishii and P. L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations,, J. Differential Equations, 83 (1990), 26. doi: 10.1016/0022-0396(90)90068-Z.

[16]

S. Kamin, R. Kersner and A. Tesei, On the Cauchy problem for a class of parabolic equations with variable density,, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 9 (1998), 279.

[17]

S. Kamin and P. Rosenau, Propagation of thermal waves in an inhomogeneous medium,, Comm. Pure Appl. Math., 33 (1981), 831. doi: 10.1002/cpa.3160340605.

[18]

R. Z. Khas'minskii, Diffusion processes and elliptic differential equations degenerating at the boundary of the domain,, Th. Prob. Appl., 4 (1958), 400. doi: 10.1137/1103033.

[19]

L. Lorenzi and M. Bertoldi, "Analytical Methods for Markov Semigroups,'', Pure and Applied Mathematics, 283 (2007).

[20]

A. Lunardi, Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in $IR^n$,, Studia Math., 128 (1998), 171.

[21]

O. A. Oleinik and E. V. Radkevic, "Second Order Equations with Nonnegative Characteristic Form,'', Amer. Math. Soc., (1973).

[22]

M. A. Pozio, F. Punzo and A. Tesei, Criteria for well-posedness of degenerate elliptic and parabolic problems,, J. Math. Pures Appl., 90 (2008), 353. doi: 10.1016/j.matpur.2008.06.001.

[23]

M. A. Pozio and A. Tesei, On the uniqueness of bounded solutions to singular parabolic problems,, Discr. Cont. Dyn. Syst., 13 (2005), 117. doi: 10.3934/dcds.2005.13.117.

[24]

F. Punzo and A. Tesei, Uniqueness of solutions to degenerate elliptic problems with unbounded coefficients,, Ann. Inst. H. Poincaré - Analyse Nonlinéaire, 26 (2009), 2001.

[25]

F. Punzo and A. Tesei, On the refined maximum principle for degenerate elliptic and parabolic problems,, Nonlinear Anal., 70 (2009), 3047. doi: 10.1016/j.na.2008.12.032.

[26]

F. Punzo and A. Tesei, On a semilinear parabolic equation with inverse-square potential,, Rend. Lincei Mat. Appl., 21 (2010), 1.

[27]

M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,'', Springer-Verlag, (1984).

[28]

D. Stroock and S. R. S. Varadhan, On degenerate elliptic-parabolic operators of second order and their associate diffusions,, Comm. Pure Appl. Math., 25 (1972), 651. doi: 10.1002/cpa.3160250603.

[29]

K. Taira, "Diffusion Processes and Partial Differential Equations,'', Academic Press, (1988).

show all references

References:
[1]

C. Bandle, V. Moroz and W. Reichel, "Boundary blowup'' type sub-solutions to semilinear elliptic equations with Hardy potential,, J. London Math. Soc., 77 (2008), 503. doi: 10.1112/jlms/jdm104.

[2]

R. Benedetti and C. Petronio, "Lecture on Hyperbolic Geometry,'', Springer-Verlag, (1992).

[3]

H. Berestycki, L. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and the maximum principle for second-order elliptic operators in general domains,, Comm. Pure Appl. Math., 47 (1994), 47. doi: 10.1002/cpa.3160470105.

[4]

M. Bertsch, R. Dal Passo and R. Van Deer Hout, Nonuniqueness for the heat flow of harmonic maps on the disk,, Arch. Rat. Mech. Anal., 161 (2002), 93. doi: 10.1007/s002050100171.

[5]

S. Cerrai, "Second Order PDE's in Finite and Infinite Dimension. A Probabilistic Approach,'', Lecture Notes in Mathematics {\bf 1762}, 1762 (1762).

[6]

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc., 27 (1992), 1. doi: 10.1090/S0273-0979-1992-00266-5.

[7]

S. D. Eidelman, S. Kamin and F. Porper, Uniqueness of solutions of the Cauchy problem for parabolic equations degenerating at infinity,, Asympt. Anal., 22 (2000), 349.

[8]

G. Fichera, Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine,, Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I, 5 (1956), 1.

[9]

A. Friedman, "Partial Differential Equations of Parabolic Type,'', Prentice-Hall, (1964).

[10]

A. Friedman, "Stochastic Differential Equations and Applications,'' I, II,, Probability and Mathematical Statistics, 28 (1976).

[11]

I. Guikhman and A. Skorokhod, "Introduction à la Théorie des Processus Aléatoires,'', MIR Publishers, (1980).

[12]

A. Grigoryan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds,, Bull. Amer. Math. Soc., 36 (1999), 135. doi: 10.1090/S0273-0979-99-00776-4.

[13]

A. M. Il'in, A. S. Kalashnikov and O. A. Oleinik, Linear equations of the second order of parabolic type,, Russian Math. Surveys, 17 (1962), 1. doi: 10.1070/RM1962v017n03ABEH004115.

[14]

H. Ishii, On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions,, Funkc. Ekv., 38 (1995), 101.

[15]

H. Ishii and P. L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations,, J. Differential Equations, 83 (1990), 26. doi: 10.1016/0022-0396(90)90068-Z.

[16]

S. Kamin, R. Kersner and A. Tesei, On the Cauchy problem for a class of parabolic equations with variable density,, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 9 (1998), 279.

[17]

S. Kamin and P. Rosenau, Propagation of thermal waves in an inhomogeneous medium,, Comm. Pure Appl. Math., 33 (1981), 831. doi: 10.1002/cpa.3160340605.

[18]

R. Z. Khas'minskii, Diffusion processes and elliptic differential equations degenerating at the boundary of the domain,, Th. Prob. Appl., 4 (1958), 400. doi: 10.1137/1103033.

[19]

L. Lorenzi and M. Bertoldi, "Analytical Methods for Markov Semigroups,'', Pure and Applied Mathematics, 283 (2007).

[20]

A. Lunardi, Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in $IR^n$,, Studia Math., 128 (1998), 171.

[21]

O. A. Oleinik and E. V. Radkevic, "Second Order Equations with Nonnegative Characteristic Form,'', Amer. Math. Soc., (1973).

[22]

M. A. Pozio, F. Punzo and A. Tesei, Criteria for well-posedness of degenerate elliptic and parabolic problems,, J. Math. Pures Appl., 90 (2008), 353. doi: 10.1016/j.matpur.2008.06.001.

[23]

M. A. Pozio and A. Tesei, On the uniqueness of bounded solutions to singular parabolic problems,, Discr. Cont. Dyn. Syst., 13 (2005), 117. doi: 10.3934/dcds.2005.13.117.

[24]

F. Punzo and A. Tesei, Uniqueness of solutions to degenerate elliptic problems with unbounded coefficients,, Ann. Inst. H. Poincaré - Analyse Nonlinéaire, 26 (2009), 2001.

[25]

F. Punzo and A. Tesei, On the refined maximum principle for degenerate elliptic and parabolic problems,, Nonlinear Anal., 70 (2009), 3047. doi: 10.1016/j.na.2008.12.032.

[26]

F. Punzo and A. Tesei, On a semilinear parabolic equation with inverse-square potential,, Rend. Lincei Mat. Appl., 21 (2010), 1.

[27]

M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,'', Springer-Verlag, (1984).

[28]

D. Stroock and S. R. S. Varadhan, On degenerate elliptic-parabolic operators of second order and their associate diffusions,, Comm. Pure Appl. Math., 25 (1972), 651. doi: 10.1002/cpa.3160250603.

[29]

K. Taira, "Diffusion Processes and Partial Differential Equations,'', Academic Press, (1988).

[1]

Giuseppe Floridia. Well-posedness for a class of nonlinear degenerate parabolic equations. Conference Publications, 2015, 2015 (special) : 455-463. doi: 10.3934/proc.2015.0455

[2]

Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations & Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15

[3]

Wenming Hu, Huicheng Yin. Well-posedness of low regularity solutions to the second order strictly hyperbolic equations with non-Lipschitzian coefficients. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1891-1919. doi: 10.3934/cpaa.2019088

[4]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[5]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems & Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307

[6]

Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111

[7]

Hongjun Gao, Chengfeng Sun. Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3053-3073. doi: 10.3934/dcdsb.2016087

[8]

Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813

[9]

Junxiong Jia, Jigen Peng, Kexue Li. Well-posedness of abstract distributed-order fractional diffusion equations. Communications on Pure & Applied Analysis, 2014, 13 (2) : 605-621. doi: 10.3934/cpaa.2014.13.605

[10]

Jerry Bona, Hongqiu Chen. Well-posedness for regularized nonlinear dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1253-1275. doi: 10.3934/dcds.2009.23.1253

[11]

Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657

[12]

Daoyuan Fang, Ruizhao Zi. On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3517-3541. doi: 10.3934/dcds.2013.33.3517

[13]

Qunyi Bie, Qiru Wang, Zheng-An Yao. On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces. Kinetic & Related Models, 2015, 8 (3) : 395-411. doi: 10.3934/krm.2015.8.395

[14]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations & Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

[15]

Hyungjin Huh, Bora Moon. Low regularity well-posedness for Gross-Neveu equations. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1903-1913. doi: 10.3934/cpaa.2015.14.1903

[16]

Matthias Hieber, Sylvie Monniaux. Well-posedness results for the Navier-Stokes equations in the rotational framework. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5143-5151. doi: 10.3934/dcds.2013.33.5143

[17]

Can Li, Weihua Deng, Lijing Zhao. Well-posedness and numerical algorithm for the tempered fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1989-2015. doi: 10.3934/dcdsb.2019026

[18]

Hiroshi Watanabe. Existence and uniqueness of entropy solutions to strongly degenerate parabolic equations with discontinuous coefficients. Conference Publications, 2013, 2013 (special) : 781-790. doi: 10.3934/proc.2013.2013.781

[19]

Hiroshi Watanabe. Solvability of boundary value problems for strongly degenerate parabolic equations with discontinuous coefficients. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 177-189. doi: 10.3934/dcdss.2014.7.177

[20]

Kenneth Hvistendahl Karlsen, Nils Henrik Risebro. On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1081-1104. doi: 10.3934/dcds.2003.9.1081

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]