August  2011, 30(3): 917-944. doi: 10.3934/dcds.2011.30.917

A spectral gap for transfer operators of piecewise expanding maps

1. 

45 rue d'Ulm, 75005 Paris, France

Received  May 2010 Revised  November 2010 Published  March 2011

We consider piecewise $\C^{1+\alpha}$ uniformly expanding maps on a Riemannian manifold, and study their invariant physical measures. We study the Perron-Frobenius operator on Sobolev spaces and bounded variation spaces, and prove that it is quasicompact if some conditions on the Lyapunov exponent and the combinatorial complexities are satisfied. Then, we get strong results concerning the existence of physical ergodic measures, and the exponential mixing of smooth observables.
Citation: Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 917-944. doi: 10.3934/dcds.2011.30.917
References:
[1]

V. Baladi, Anisotropic Sobolev spaces and dynamical transfer operators: $C^\infty$ Foliations, in "Algebraic and Topological Dynamics" (eds. Sergiy Kolyada, Yuri Manin and Thomas Ward), Contemporary Mathematics (2005), 123-136.

[2]

V. Baladi, "Positive Transfer Operators and Decay Of Correlations," World scientific, 2000. doi: 10.1142/9789812813633.

[3]

V. Baladi and S. Gouëzel, Good Banach spaces for piecewise hyperbolic maps via interpolation, Annales de l'Institut Henri Poincaré, Analyse non linéaire, 26 (2009), 1453-1481.

[4]

V. Baladi and S. Gouëzel, Banach spaces for piecewise cone hyperbolic maps, Journal of Modern Dynamics, 4 (2010), 91-137. doi: 10.3934/jmd.2010.4.91.

[5]

M. Blank, G. Keller and C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity, 15 (2002), 1905-1973. doi: 10.1088/0951-7715/15/6/309.

[6]

J. Buzzi, Intrisic ergodicity of affine maps in $[0,1]^d$, Monatshefte für Mathematik, 124 (1997), 97-118.

[7]

J. Buzzi, No or infinitely many A.C.I.P. for piecewise expanding $C^r$ maps in higher dimensions, Communications in Mathematical Physics, 222 (2001), 495-501. doi: 10.1007/s002200100509.

[8]

W. J. Cowieson, Stochastic stability for piecewise expanding maps in $\mathbb{R}^{d}$, Nonlinearity, 13 (2000), 1745-1760. doi: 10.1088/0951-7715/13/5/316.

[9]

W. J. Cowieson, Absolutely continuous invariant measures for most piecewise smooth expanding maps, Ergodic Theory and Dynamical Systems, 22 (2002), 1061-1078. doi: 10.1017/S0143385702000627.

[10]

E. Giusti, "Minimal Surfaces and Functions of Bounded Variation," Birkhaüser, Boston, 1984.

[11]

P. Góra and A. Boyarsky, Absolutely continuous invariant measures for piecewise expanding $C^2$ transformations in $\mathbb{R}^{n}$, Israël Journal of Mathematics, 67 (1989), 272-290. doi: 10.1007/BF02764946.

[12]

H. Hennion, Sur un théorème spectral et son application aux noyaux lipchitziens, (French) Proceedings of the American Mathematical Society, 118 (1993), 627-639.

[13]

G. Keller, Ergodicité et mesures invariantes pour les transformations dilatantes par morceaux d'une région bornée du plan, (French) Comptes-rendus de l'Académie des Sciences de Paris, 289 (1979), 625-627.

[14]

G. Keller, Generalized bounded variation and applications to piecewise monotonic transformations, Zeitschrift für Wahrscheinlichkeitheorie und verwandte Geliete, 69 (1985), 461-478.

[15]

G. Keller and H. H. Rugh, Eigenfunctions for smooth expanding circle maps, Nonlinearity, 17 (2004), 1723-1730.

[16]

A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Transactions of the American Mathematical Society, 186 (1973), 481-488.

[17]

B. Saussol, Absolutely continuous invariant measures for multidimensional expanding maps, Israël Journal of Mathematics, 116 (2000), 223-248.

[18]

R. S. Strichartz, Multipliers on fractional Sobolev spaces, Journal of Mathematics and Mechanics, 16 (1967), 1031-1060.

[19]

H. Triebel, General function spaces. III. (Spaces $B_{p,q}^{g(x)}$ and $F_{p,q}^{g(x)}$, $1: Basic properties), Analysis Mathematica, 3 (1977), 221-249.

[20]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators," North-Holland, Amsterdam, 1978.

[21]

H. Triebel, "Theory of Function Spaces. II," Birkhäuser, Basel, 1992.

[22]

M. Tsujii, Piecewise expanding maps on the plane with singular ergodic properties, Ergodic Theory and Dynamical Systems, 20 (2000), 1851-1857.

show all references

References:
[1]

V. Baladi, Anisotropic Sobolev spaces and dynamical transfer operators: $C^\infty$ Foliations, in "Algebraic and Topological Dynamics" (eds. Sergiy Kolyada, Yuri Manin and Thomas Ward), Contemporary Mathematics (2005), 123-136.

[2]

V. Baladi, "Positive Transfer Operators and Decay Of Correlations," World scientific, 2000. doi: 10.1142/9789812813633.

[3]

V. Baladi and S. Gouëzel, Good Banach spaces for piecewise hyperbolic maps via interpolation, Annales de l'Institut Henri Poincaré, Analyse non linéaire, 26 (2009), 1453-1481.

[4]

V. Baladi and S. Gouëzel, Banach spaces for piecewise cone hyperbolic maps, Journal of Modern Dynamics, 4 (2010), 91-137. doi: 10.3934/jmd.2010.4.91.

[5]

M. Blank, G. Keller and C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity, 15 (2002), 1905-1973. doi: 10.1088/0951-7715/15/6/309.

[6]

J. Buzzi, Intrisic ergodicity of affine maps in $[0,1]^d$, Monatshefte für Mathematik, 124 (1997), 97-118.

[7]

J. Buzzi, No or infinitely many A.C.I.P. for piecewise expanding $C^r$ maps in higher dimensions, Communications in Mathematical Physics, 222 (2001), 495-501. doi: 10.1007/s002200100509.

[8]

W. J. Cowieson, Stochastic stability for piecewise expanding maps in $\mathbb{R}^{d}$, Nonlinearity, 13 (2000), 1745-1760. doi: 10.1088/0951-7715/13/5/316.

[9]

W. J. Cowieson, Absolutely continuous invariant measures for most piecewise smooth expanding maps, Ergodic Theory and Dynamical Systems, 22 (2002), 1061-1078. doi: 10.1017/S0143385702000627.

[10]

E. Giusti, "Minimal Surfaces and Functions of Bounded Variation," Birkhaüser, Boston, 1984.

[11]

P. Góra and A. Boyarsky, Absolutely continuous invariant measures for piecewise expanding $C^2$ transformations in $\mathbb{R}^{n}$, Israël Journal of Mathematics, 67 (1989), 272-290. doi: 10.1007/BF02764946.

[12]

H. Hennion, Sur un théorème spectral et son application aux noyaux lipchitziens, (French) Proceedings of the American Mathematical Society, 118 (1993), 627-639.

[13]

G. Keller, Ergodicité et mesures invariantes pour les transformations dilatantes par morceaux d'une région bornée du plan, (French) Comptes-rendus de l'Académie des Sciences de Paris, 289 (1979), 625-627.

[14]

G. Keller, Generalized bounded variation and applications to piecewise monotonic transformations, Zeitschrift für Wahrscheinlichkeitheorie und verwandte Geliete, 69 (1985), 461-478.

[15]

G. Keller and H. H. Rugh, Eigenfunctions for smooth expanding circle maps, Nonlinearity, 17 (2004), 1723-1730.

[16]

A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Transactions of the American Mathematical Society, 186 (1973), 481-488.

[17]

B. Saussol, Absolutely continuous invariant measures for multidimensional expanding maps, Israël Journal of Mathematics, 116 (2000), 223-248.

[18]

R. S. Strichartz, Multipliers on fractional Sobolev spaces, Journal of Mathematics and Mechanics, 16 (1967), 1031-1060.

[19]

H. Triebel, General function spaces. III. (Spaces $B_{p,q}^{g(x)}$ and $F_{p,q}^{g(x)}$, $1: Basic properties), Analysis Mathematica, 3 (1977), 221-249.

[20]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators," North-Holland, Amsterdam, 1978.

[21]

H. Triebel, "Theory of Function Spaces. II," Birkhäuser, Basel, 1992.

[22]

M. Tsujii, Piecewise expanding maps on the plane with singular ergodic properties, Ergodic Theory and Dynamical Systems, 20 (2000), 1851-1857.

[1]

Gary Froyland, Ognjen Stancevic. Escape rates and Perron-Frobenius operators: Open and closed dynamical systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 457-472. doi: 10.3934/dcdsb.2010.14.457

[2]

Martin Lustig, Caglar Uyanik. Perron-Frobenius theory and frequency convergence for reducible substitutions. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 355-385. doi: 10.3934/dcds.2017015

[3]

Marianne Akian, Stéphane Gaubert, Antoine Hochart. A game theory approach to the existence and uniqueness of nonlinear Perron-Frobenius eigenvectors. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 207-231. doi: 10.3934/dcds.2020009

[4]

Stefan Klus, Péter Koltai, Christof Schütte. On the numerical approximation of the Perron-Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (1) : 51-79. doi: 10.3934/jcd.2016003

[5]

Ralf Spatzier, Lei Yang. Exponential mixing and smooth classification of commuting expanding maps. Journal of Modern Dynamics, 2017, 11: 263-312. doi: 10.3934/jmd.2017012

[6]

Jiu Ding, Noah H. Rhee. A unified maximum entropy method via spline functions for Frobenius-Perron operators. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 235-245. doi: 10.3934/naco.2013.3.235

[7]

Marc Kesseböhmer, Sabrina Kombrink. A complex Ruelle-Perron-Frobenius theorem for infinite Markov shifts with applications to renewal theory. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 335-352. doi: 10.3934/dcdss.2017016

[8]

Marco Lenci. Uniformly expanding Markov maps of the real line: Exactness and infinite mixing. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3867-3903. doi: 10.3934/dcds.2017163

[9]

Nigel P. Byott, Mark Holland, Yiwei Zhang. On the mixing properties of piecewise expanding maps under composition with permutations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3365-3390. doi: 10.3934/dcds.2013.33.3365

[10]

Cristina Lizana, Vilton Pinheiro, Paulo Varandas. Contribution to the ergodic theory of robustly transitive maps. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 353-365. doi: 10.3934/dcds.2015.35.353

[11]

Jean-Baptiste Bardet, Bastien Fernandez. Extensive escape rate in lattices of weakly coupled expanding maps. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 669-684. doi: 10.3934/dcds.2011.31.669

[12]

Asaf Katz. On mixing and sparse ergodic theorems. Journal of Modern Dynamics, 2021, 17: 1-32. doi: 10.3934/jmd.2021001

[13]

Carlangelo Liverani. A footnote on expanding maps. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3741-3751. doi: 10.3934/dcds.2013.33.3741

[14]

Stefan Klus, Christof Schütte. Towards tensor-based methods for the numerical approximation of the Perron--Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (2) : 139-161. doi: 10.3934/jcd.2016007

[15]

Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757

[16]

Thierry de la Rue. An introduction to joinings in ergodic theory. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 121-142. doi: 10.3934/dcds.2006.15.121

[17]

Peter Haïssinsky, Kevin M. Pilgrim. An algebraic characterization of expanding Thurston maps. Journal of Modern Dynamics, 2012, 6 (4) : 451-476. doi: 10.3934/jmd.2012.6.451

[18]

Peter Haïssinsky, Kevin M. Pilgrim. Examples of coarse expanding conformal maps. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2403-2416. doi: 10.3934/dcds.2012.32.2403

[19]

Yushi Nakano, Shota Sakamoto. Spectra of expanding maps on Besov spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1779-1797. doi: 10.3934/dcds.2019077

[20]

José F. Alves. Stochastic behavior of asymptotically expanding maps. Conference Publications, 2001, 2001 (Special) : 14-21. doi: 10.3934/proc.2001.2001.14

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (111)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]