August  2011, 30(3): 917-944. doi: 10.3934/dcds.2011.30.917

A spectral gap for transfer operators of piecewise expanding maps

1. 

45 rue d'Ulm, 75005 Paris, France

Received  May 2010 Revised  November 2010 Published  March 2011

We consider piecewise $\C^{1+\alpha}$ uniformly expanding maps on a Riemannian manifold, and study their invariant physical measures. We study the Perron-Frobenius operator on Sobolev spaces and bounded variation spaces, and prove that it is quasicompact if some conditions on the Lyapunov exponent and the combinatorial complexities are satisfied. Then, we get strong results concerning the existence of physical ergodic measures, and the exponential mixing of smooth observables.
Citation: Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 917-944. doi: 10.3934/dcds.2011.30.917
References:
[1]

V. Baladi, Anisotropic Sobolev spaces and dynamical transfer operators: $C^\infty$ Foliations,, in, (2005), 123.   Google Scholar

[2]

V. Baladi, "Positive Transfer Operators and Decay Of Correlations,", World scientific, (2000).  doi: 10.1142/9789812813633.  Google Scholar

[3]

V. Baladi and S. Gouëzel, Good Banach spaces for piecewise hyperbolic maps via interpolation,, Annales de l'Institut Henri Poincaré, 26 (2009), 1453.   Google Scholar

[4]

V. Baladi and S. Gouëzel, Banach spaces for piecewise cone hyperbolic maps,, Journal of Modern Dynamics, 4 (2010), 91.  doi: 10.3934/jmd.2010.4.91.  Google Scholar

[5]

M. Blank, G. Keller and C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps,, Nonlinearity, 15 (2002), 1905.  doi: 10.1088/0951-7715/15/6/309.  Google Scholar

[6]

J. Buzzi, Intrisic ergodicity of affine maps in $[0,1]^d$,, Monatshefte für Mathematik, 124 (1997), 97.   Google Scholar

[7]

J. Buzzi, No or infinitely many A.C.I.P. for piecewise expanding $C^r$ maps in higher dimensions,, Communications in Mathematical Physics, 222 (2001), 495.  doi: 10.1007/s002200100509.  Google Scholar

[8]

W. J. Cowieson, Stochastic stability for piecewise expanding maps in $\R^d$,, Nonlinearity, 13 (2000), 1745.  doi: 10.1088/0951-7715/13/5/316.  Google Scholar

[9]

W. J. Cowieson, Absolutely continuous invariant measures for most piecewise smooth expanding maps,, Ergodic Theory and Dynamical Systems, 22 (2002), 1061.  doi: 10.1017/S0143385702000627.  Google Scholar

[10]

E. Giusti, "Minimal Surfaces and Functions of Bounded Variation,", Birkhaüser, (1984).   Google Scholar

[11]

P. Góra and A. Boyarsky, Absolutely continuous invariant measures for piecewise expanding $C^2$ transformations in $\R^n$,, Israël Journal of Mathematics, 67 (1989), 272.  doi: 10.1007/BF02764946.  Google Scholar

[12]

H. Hennion, Sur un théorème spectral et son application aux noyaux lipchitziens,, (French) Proceedings of the American Mathematical Society, 118 (1993), 627.   Google Scholar

[13]

G. Keller, Ergodicité et mesures invariantes pour les transformations dilatantes par morceaux d'une région bornée du plan,, (French) Comptes-rendus de l'Académie des Sciences de Paris, 289 (1979), 625.   Google Scholar

[14]

G. Keller, Generalized bounded variation and applications to piecewise monotonic transformations,, Zeitschrift für Wahrscheinlichkeitheorie und verwandte Geliete, 69 (1985), 461.   Google Scholar

[15]

G. Keller and H. H. Rugh, Eigenfunctions for smooth expanding circle maps,, Nonlinearity, 17 (2004), 1723.   Google Scholar

[16]

A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations,, Transactions of the American Mathematical Society, 186 (1973), 481.   Google Scholar

[17]

B. Saussol, Absolutely continuous invariant measures for multidimensional expanding maps,, Israël Journal of Mathematics, 116 (2000), 223.   Google Scholar

[18]

R. S. Strichartz, Multipliers on fractional Sobolev spaces,, Journal of Mathematics and Mechanics, 16 (1967), 1031.   Google Scholar

[19]

H. Triebel, General function spaces. III. (Spaces $B_{p,q}^{g(x)}$ and $F_{p,q}^{g(x)}$, $1: Basic properties),, Analysis Mathematica, 3 (1977), 221.   Google Scholar

[20]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", North-Holland, (1978).   Google Scholar

[21]

H. Triebel, "Theory of Function Spaces. II,", Birkhäuser, (1992).   Google Scholar

[22]

M. Tsujii, Piecewise expanding maps on the plane with singular ergodic properties,, Ergodic Theory and Dynamical Systems, 20 (2000), 1851.   Google Scholar

show all references

References:
[1]

V. Baladi, Anisotropic Sobolev spaces and dynamical transfer operators: $C^\infty$ Foliations,, in, (2005), 123.   Google Scholar

[2]

V. Baladi, "Positive Transfer Operators and Decay Of Correlations,", World scientific, (2000).  doi: 10.1142/9789812813633.  Google Scholar

[3]

V. Baladi and S. Gouëzel, Good Banach spaces for piecewise hyperbolic maps via interpolation,, Annales de l'Institut Henri Poincaré, 26 (2009), 1453.   Google Scholar

[4]

V. Baladi and S. Gouëzel, Banach spaces for piecewise cone hyperbolic maps,, Journal of Modern Dynamics, 4 (2010), 91.  doi: 10.3934/jmd.2010.4.91.  Google Scholar

[5]

M. Blank, G. Keller and C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps,, Nonlinearity, 15 (2002), 1905.  doi: 10.1088/0951-7715/15/6/309.  Google Scholar

[6]

J. Buzzi, Intrisic ergodicity of affine maps in $[0,1]^d$,, Monatshefte für Mathematik, 124 (1997), 97.   Google Scholar

[7]

J. Buzzi, No or infinitely many A.C.I.P. for piecewise expanding $C^r$ maps in higher dimensions,, Communications in Mathematical Physics, 222 (2001), 495.  doi: 10.1007/s002200100509.  Google Scholar

[8]

W. J. Cowieson, Stochastic stability for piecewise expanding maps in $\R^d$,, Nonlinearity, 13 (2000), 1745.  doi: 10.1088/0951-7715/13/5/316.  Google Scholar

[9]

W. J. Cowieson, Absolutely continuous invariant measures for most piecewise smooth expanding maps,, Ergodic Theory and Dynamical Systems, 22 (2002), 1061.  doi: 10.1017/S0143385702000627.  Google Scholar

[10]

E. Giusti, "Minimal Surfaces and Functions of Bounded Variation,", Birkhaüser, (1984).   Google Scholar

[11]

P. Góra and A. Boyarsky, Absolutely continuous invariant measures for piecewise expanding $C^2$ transformations in $\R^n$,, Israël Journal of Mathematics, 67 (1989), 272.  doi: 10.1007/BF02764946.  Google Scholar

[12]

H. Hennion, Sur un théorème spectral et son application aux noyaux lipchitziens,, (French) Proceedings of the American Mathematical Society, 118 (1993), 627.   Google Scholar

[13]

G. Keller, Ergodicité et mesures invariantes pour les transformations dilatantes par morceaux d'une région bornée du plan,, (French) Comptes-rendus de l'Académie des Sciences de Paris, 289 (1979), 625.   Google Scholar

[14]

G. Keller, Generalized bounded variation and applications to piecewise monotonic transformations,, Zeitschrift für Wahrscheinlichkeitheorie und verwandte Geliete, 69 (1985), 461.   Google Scholar

[15]

G. Keller and H. H. Rugh, Eigenfunctions for smooth expanding circle maps,, Nonlinearity, 17 (2004), 1723.   Google Scholar

[16]

A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations,, Transactions of the American Mathematical Society, 186 (1973), 481.   Google Scholar

[17]

B. Saussol, Absolutely continuous invariant measures for multidimensional expanding maps,, Israël Journal of Mathematics, 116 (2000), 223.   Google Scholar

[18]

R. S. Strichartz, Multipliers on fractional Sobolev spaces,, Journal of Mathematics and Mechanics, 16 (1967), 1031.   Google Scholar

[19]

H. Triebel, General function spaces. III. (Spaces $B_{p,q}^{g(x)}$ and $F_{p,q}^{g(x)}$, $1: Basic properties),, Analysis Mathematica, 3 (1977), 221.   Google Scholar

[20]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", North-Holland, (1978).   Google Scholar

[21]

H. Triebel, "Theory of Function Spaces. II,", Birkhäuser, (1992).   Google Scholar

[22]

M. Tsujii, Piecewise expanding maps on the plane with singular ergodic properties,, Ergodic Theory and Dynamical Systems, 20 (2000), 1851.   Google Scholar

[1]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[2]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[3]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[4]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[5]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[6]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[7]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[8]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[9]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[10]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[11]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]