\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A spectral gap for transfer operators of piecewise expanding maps

Abstract Related Papers Cited by
  • We consider piecewise $\C^{1+\alpha}$ uniformly expanding maps on a Riemannian manifold, and study their invariant physical measures. We study the Perron-Frobenius operator on Sobolev spaces and bounded variation spaces, and prove that it is quasicompact if some conditions on the Lyapunov exponent and the combinatorial complexities are satisfied. Then, we get strong results concerning the existence of physical ergodic measures, and the exponential mixing of smooth observables.
    Mathematics Subject Classification: Primary: 37A25; Secondary: 47A35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. Baladi, Anisotropic Sobolev spaces and dynamical transfer operators: $C^\infty$ Foliations, in "Algebraic and Topological Dynamics" (eds. Sergiy Kolyada, Yuri Manin and Thomas Ward), Contemporary Mathematics (2005), 123-136.

    [2]

    V. Baladi, "Positive Transfer Operators and Decay Of Correlations," World scientific, 2000.doi: 10.1142/9789812813633.

    [3]

    V. Baladi and S. Gouëzel, Good Banach spaces for piecewise hyperbolic maps via interpolation, Annales de l'Institut Henri Poincaré, Analyse non linéaire, 26 (2009), 1453-1481.

    [4]

    V. Baladi and S. Gouëzel, Banach spaces for piecewise cone hyperbolic maps, Journal of Modern Dynamics, 4 (2010), 91-137.doi: 10.3934/jmd.2010.4.91.

    [5]

    M. Blank, G. Keller and C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity, 15 (2002), 1905-1973.doi: 10.1088/0951-7715/15/6/309.

    [6]

    J. Buzzi, Intrisic ergodicity of affine maps in $[0,1]^d$, Monatshefte für Mathematik, 124 (1997), 97-118.

    [7]

    J. Buzzi, No or infinitely many A.C.I.P. for piecewise expanding $C^r$ maps in higher dimensions, Communications in Mathematical Physics, 222 (2001), 495-501.doi: 10.1007/s002200100509.

    [8]

    W. J. Cowieson, Stochastic stability for piecewise expanding maps in $\R^d$, Nonlinearity, 13 (2000), 1745-1760.doi: 10.1088/0951-7715/13/5/316.

    [9]

    W. J. Cowieson, Absolutely continuous invariant measures for most piecewise smooth expanding maps, Ergodic Theory and Dynamical Systems, 22 (2002), 1061-1078.doi: 10.1017/S0143385702000627.

    [10]

    E. Giusti, "Minimal Surfaces and Functions of Bounded Variation," Birkhaüser, Boston, 1984.

    [11]

    P. Góra and A. Boyarsky, Absolutely continuous invariant measures for piecewise expanding $C^2$ transformations in $\R^n$, Israël Journal of Mathematics, 67 (1989), 272-290.doi: 10.1007/BF02764946.

    [12]

    H. Hennion, Sur un théorème spectral et son application aux noyaux lipchitziens, (French) Proceedings of the American Mathematical Society, 118 (1993), 627-639.

    [13]

    G. Keller, Ergodicité et mesures invariantes pour les transformations dilatantes par morceaux d'une région bornée du plan, (French) Comptes-rendus de l'Académie des Sciences de Paris, 289 (1979), 625-627.

    [14]

    G. Keller, Generalized bounded variation and applications to piecewise monotonic transformations, Zeitschrift für Wahrscheinlichkeitheorie und verwandte Geliete, 69 (1985), 461-478.

    [15]

    G. Keller and H. H. Rugh, Eigenfunctions for smooth expanding circle maps, Nonlinearity, 17 (2004), 1723-1730.

    [16]

    A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Transactions of the American Mathematical Society, 186 (1973), 481-488.

    [17]

    B. Saussol, Absolutely continuous invariant measures for multidimensional expanding maps, Israël Journal of Mathematics, 116 (2000), 223-248.

    [18]

    R. S. Strichartz, Multipliers on fractional Sobolev spaces, Journal of Mathematics and Mechanics, 16 (1967), 1031-1060.

    [19]

    H. Triebel, General function spaces. III. (Spaces $B_{p,q}^{g(x)}$ and $F_{p,q}^{g(x)}$, $1: Basic properties), Analysis Mathematica, 3 (1977), 221-249.

    [20]

    H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators," North-Holland, Amsterdam, 1978.

    [21]

    H. Triebel, "Theory of Function Spaces. II," Birkhäuser, Basel, 1992.

    [22]

    M. Tsujii, Piecewise expanding maps on the plane with singular ergodic properties, Ergodic Theory and Dynamical Systems, 20 (2000), 1851-1857.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(118) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return