August  2011, 30(3): 917-944. doi: 10.3934/dcds.2011.30.917

A spectral gap for transfer operators of piecewise expanding maps

1. 

45 rue d'Ulm, 75005 Paris, France

Received  May 2010 Revised  November 2010 Published  March 2011

We consider piecewise $\C^{1+\alpha}$ uniformly expanding maps on a Riemannian manifold, and study their invariant physical measures. We study the Perron-Frobenius operator on Sobolev spaces and bounded variation spaces, and prove that it is quasicompact if some conditions on the Lyapunov exponent and the combinatorial complexities are satisfied. Then, we get strong results concerning the existence of physical ergodic measures, and the exponential mixing of smooth observables.
Citation: Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 917-944. doi: 10.3934/dcds.2011.30.917
References:
[1]

V. Baladi, Anisotropic Sobolev spaces and dynamical transfer operators: $C^\infty$ Foliations,, in, (2005), 123. Google Scholar

[2]

V. Baladi, "Positive Transfer Operators and Decay Of Correlations,", World scientific, (2000). doi: 10.1142/9789812813633. Google Scholar

[3]

V. Baladi and S. Gouëzel, Good Banach spaces for piecewise hyperbolic maps via interpolation,, Annales de l'Institut Henri Poincaré, 26 (2009), 1453. Google Scholar

[4]

V. Baladi and S. Gouëzel, Banach spaces for piecewise cone hyperbolic maps,, Journal of Modern Dynamics, 4 (2010), 91. doi: 10.3934/jmd.2010.4.91. Google Scholar

[5]

M. Blank, G. Keller and C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps,, Nonlinearity, 15 (2002), 1905. doi: 10.1088/0951-7715/15/6/309. Google Scholar

[6]

J. Buzzi, Intrisic ergodicity of affine maps in $[0,1]^d$,, Monatshefte für Mathematik, 124 (1997), 97. Google Scholar

[7]

J. Buzzi, No or infinitely many A.C.I.P. for piecewise expanding $C^r$ maps in higher dimensions,, Communications in Mathematical Physics, 222 (2001), 495. doi: 10.1007/s002200100509. Google Scholar

[8]

W. J. Cowieson, Stochastic stability for piecewise expanding maps in $\R^d$,, Nonlinearity, 13 (2000), 1745. doi: 10.1088/0951-7715/13/5/316. Google Scholar

[9]

W. J. Cowieson, Absolutely continuous invariant measures for most piecewise smooth expanding maps,, Ergodic Theory and Dynamical Systems, 22 (2002), 1061. doi: 10.1017/S0143385702000627. Google Scholar

[10]

E. Giusti, "Minimal Surfaces and Functions of Bounded Variation,", Birkhaüser, (1984). Google Scholar

[11]

P. Góra and A. Boyarsky, Absolutely continuous invariant measures for piecewise expanding $C^2$ transformations in $\R^n$,, Israël Journal of Mathematics, 67 (1989), 272. doi: 10.1007/BF02764946. Google Scholar

[12]

H. Hennion, Sur un théorème spectral et son application aux noyaux lipchitziens,, (French) Proceedings of the American Mathematical Society, 118 (1993), 627. Google Scholar

[13]

G. Keller, Ergodicité et mesures invariantes pour les transformations dilatantes par morceaux d'une région bornée du plan,, (French) Comptes-rendus de l'Académie des Sciences de Paris, 289 (1979), 625. Google Scholar

[14]

G. Keller, Generalized bounded variation and applications to piecewise monotonic transformations,, Zeitschrift für Wahrscheinlichkeitheorie und verwandte Geliete, 69 (1985), 461. Google Scholar

[15]

G. Keller and H. H. Rugh, Eigenfunctions for smooth expanding circle maps,, Nonlinearity, 17 (2004), 1723. Google Scholar

[16]

A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations,, Transactions of the American Mathematical Society, 186 (1973), 481. Google Scholar

[17]

B. Saussol, Absolutely continuous invariant measures for multidimensional expanding maps,, Israël Journal of Mathematics, 116 (2000), 223. Google Scholar

[18]

R. S. Strichartz, Multipliers on fractional Sobolev spaces,, Journal of Mathematics and Mechanics, 16 (1967), 1031. Google Scholar

[19]

H. Triebel, General function spaces. III. (Spaces $B_{p,q}^{g(x)}$ and $F_{p,q}^{g(x)}$, $1: Basic properties),, Analysis Mathematica, 3 (1977), 221. Google Scholar

[20]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", North-Holland, (1978). Google Scholar

[21]

H. Triebel, "Theory of Function Spaces. II,", Birkhäuser, (1992). Google Scholar

[22]

M. Tsujii, Piecewise expanding maps on the plane with singular ergodic properties,, Ergodic Theory and Dynamical Systems, 20 (2000), 1851. Google Scholar

show all references

References:
[1]

V. Baladi, Anisotropic Sobolev spaces and dynamical transfer operators: $C^\infty$ Foliations,, in, (2005), 123. Google Scholar

[2]

V. Baladi, "Positive Transfer Operators and Decay Of Correlations,", World scientific, (2000). doi: 10.1142/9789812813633. Google Scholar

[3]

V. Baladi and S. Gouëzel, Good Banach spaces for piecewise hyperbolic maps via interpolation,, Annales de l'Institut Henri Poincaré, 26 (2009), 1453. Google Scholar

[4]

V. Baladi and S. Gouëzel, Banach spaces for piecewise cone hyperbolic maps,, Journal of Modern Dynamics, 4 (2010), 91. doi: 10.3934/jmd.2010.4.91. Google Scholar

[5]

M. Blank, G. Keller and C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps,, Nonlinearity, 15 (2002), 1905. doi: 10.1088/0951-7715/15/6/309. Google Scholar

[6]

J. Buzzi, Intrisic ergodicity of affine maps in $[0,1]^d$,, Monatshefte für Mathematik, 124 (1997), 97. Google Scholar

[7]

J. Buzzi, No or infinitely many A.C.I.P. for piecewise expanding $C^r$ maps in higher dimensions,, Communications in Mathematical Physics, 222 (2001), 495. doi: 10.1007/s002200100509. Google Scholar

[8]

W. J. Cowieson, Stochastic stability for piecewise expanding maps in $\R^d$,, Nonlinearity, 13 (2000), 1745. doi: 10.1088/0951-7715/13/5/316. Google Scholar

[9]

W. J. Cowieson, Absolutely continuous invariant measures for most piecewise smooth expanding maps,, Ergodic Theory and Dynamical Systems, 22 (2002), 1061. doi: 10.1017/S0143385702000627. Google Scholar

[10]

E. Giusti, "Minimal Surfaces and Functions of Bounded Variation,", Birkhaüser, (1984). Google Scholar

[11]

P. Góra and A. Boyarsky, Absolutely continuous invariant measures for piecewise expanding $C^2$ transformations in $\R^n$,, Israël Journal of Mathematics, 67 (1989), 272. doi: 10.1007/BF02764946. Google Scholar

[12]

H. Hennion, Sur un théorème spectral et son application aux noyaux lipchitziens,, (French) Proceedings of the American Mathematical Society, 118 (1993), 627. Google Scholar

[13]

G. Keller, Ergodicité et mesures invariantes pour les transformations dilatantes par morceaux d'une région bornée du plan,, (French) Comptes-rendus de l'Académie des Sciences de Paris, 289 (1979), 625. Google Scholar

[14]

G. Keller, Generalized bounded variation and applications to piecewise monotonic transformations,, Zeitschrift für Wahrscheinlichkeitheorie und verwandte Geliete, 69 (1985), 461. Google Scholar

[15]

G. Keller and H. H. Rugh, Eigenfunctions for smooth expanding circle maps,, Nonlinearity, 17 (2004), 1723. Google Scholar

[16]

A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations,, Transactions of the American Mathematical Society, 186 (1973), 481. Google Scholar

[17]

B. Saussol, Absolutely continuous invariant measures for multidimensional expanding maps,, Israël Journal of Mathematics, 116 (2000), 223. Google Scholar

[18]

R. S. Strichartz, Multipliers on fractional Sobolev spaces,, Journal of Mathematics and Mechanics, 16 (1967), 1031. Google Scholar

[19]

H. Triebel, General function spaces. III. (Spaces $B_{p,q}^{g(x)}$ and $F_{p,q}^{g(x)}$, $1: Basic properties),, Analysis Mathematica, 3 (1977), 221. Google Scholar

[20]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", North-Holland, (1978). Google Scholar

[21]

H. Triebel, "Theory of Function Spaces. II,", Birkhäuser, (1992). Google Scholar

[22]

M. Tsujii, Piecewise expanding maps on the plane with singular ergodic properties,, Ergodic Theory and Dynamical Systems, 20 (2000), 1851. Google Scholar

[1]

Gary Froyland, Ognjen Stancevic. Escape rates and Perron-Frobenius operators: Open and closed dynamical systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 457-472. doi: 10.3934/dcdsb.2010.14.457

[2]

Martin Lustig, Caglar Uyanik. Perron-Frobenius theory and frequency convergence for reducible substitutions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 355-385. doi: 10.3934/dcds.2017015

[3]

Stefan Klus, Péter Koltai, Christof Schütte. On the numerical approximation of the Perron-Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (1) : 51-79. doi: 10.3934/jcd.2016003

[4]

Ralf Spatzier, Lei Yang. Exponential mixing and smooth classification of commuting expanding maps. Journal of Modern Dynamics, 2017, 11: 263-312. doi: 10.3934/jmd.2017012

[5]

Jiu Ding, Noah H. Rhee. A unified maximum entropy method via spline functions for Frobenius-Perron operators. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 235-245. doi: 10.3934/naco.2013.3.235

[6]

Marc Kesseböhmer, Sabrina Kombrink. A complex Ruelle-Perron-Frobenius theorem for infinite Markov shifts with applications to renewal theory. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 335-352. doi: 10.3934/dcdss.2017016

[7]

Marco Lenci. Uniformly expanding Markov maps of the real line: Exactness and infinite mixing. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3867-3903. doi: 10.3934/dcds.2017163

[8]

Nigel P. Byott, Mark Holland, Yiwei Zhang. On the mixing properties of piecewise expanding maps under composition with permutations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3365-3390. doi: 10.3934/dcds.2013.33.3365

[9]

Cristina Lizana, Vilton Pinheiro, Paulo Varandas. Contribution to the ergodic theory of robustly transitive maps. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 353-365. doi: 10.3934/dcds.2015.35.353

[10]

Jean-Baptiste Bardet, Bastien Fernandez. Extensive escape rate in lattices of weakly coupled expanding maps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 669-684. doi: 10.3934/dcds.2011.31.669

[11]

Carlangelo Liverani. A footnote on expanding maps. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3741-3751. doi: 10.3934/dcds.2013.33.3741

[12]

Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757

[13]

Thierry de la Rue. An introduction to joinings in ergodic theory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 121-142. doi: 10.3934/dcds.2006.15.121

[14]

Stefan Klus, Christof Schütte. Towards tensor-based methods for the numerical approximation of the Perron--Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (2) : 139-161. doi: 10.3934/jcd.2016007

[15]

Almut Burchard, Gregory R. Chambers, Anne Dranovski. Ergodic properties of folding maps on spheres. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1183-1200. doi: 10.3934/dcds.2017049

[16]

Peter Haïssinsky, Kevin M. Pilgrim. An algebraic characterization of expanding Thurston maps. Journal of Modern Dynamics, 2012, 6 (4) : 451-476. doi: 10.3934/jmd.2012.6.451

[17]

Peter Haïssinsky, Kevin M. Pilgrim. Examples of coarse expanding conformal maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2403-2416. doi: 10.3934/dcds.2012.32.2403

[18]

José F. Alves. Stochastic behavior of asymptotically expanding maps. Conference Publications, 2001, 2001 (Special) : 14-21. doi: 10.3934/proc.2001.2001.14

[19]

Yushi Nakano, Shota Sakamoto. Spectra of expanding maps on Besov spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1779-1797. doi: 10.3934/dcds.2019077

[20]

Benoît Saussol. Recurrence rate in rapidly mixing dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 259-267. doi: 10.3934/dcds.2006.15.259

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]