ε2Δ ũ + (ũ –a(ŷ))(1- ũ2)=0 in M
&ytilde; where M is a two dimensional smooth compact Riemannian manifold associated with metric ğ, ε is a small parameter. The inhomogeneous term -1 < a(ŷ) < 1 takes maximum value b with 0 < b < 1. Assume that Γ’ = { ŷ ∈ M : a(ŷ) = 0} is a closed, smooth curve that Γ’ separate M into two disjoint components M+ and M- and also ∂a/∂v’ > 0 on Γ’, where v’ is the normal of Γ’ pointing to the interior of M-. Moreover the maximum value loop Γ = { ŷ ∈ M : a(ŷ) = b} is a closed, smooth geodesic contained in M in such a way and Γ separate M- into two disjoint components. We will show the existence of solution possessing both transition and concentration phenomenon, i.e.
uε → + 1 in M-\ Γδ, uε → -1 in M+, uε → 1 – C along Γ as ε → 0,
where Γδ is a small neighborhood of Γ and C is a fixed positive constant.
Citation: |
[1] |
N. D. Alikakos and P. W. Bates, On the singular limit in a phase field model of phase transitions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 141-178. |
[2] |
N. D. Alikakos, P. W. Bates and X. Chen, Periodic traveling waves and locating oscillating patterns in multidimensional domains, Trans. Amer. Math. Soc., 351 (1999), 2777-2805.doi: 10.1090/S0002-9947-99-02134-0. |
[3] |
N. D. Alikakos, X. Chen and G. Fusco, Motion of a droplet by surface tension along the boundray, Cal. Var. PDE, 11 (2000), 233-306.doi: 10.1007/s005260000052. |
[4] |
N. D. Alikakos and H. C. Simpson, A variational approach for a class of singular perturbation problems and applications, Proc. Roy. Soc. Edinburgh Sect. A, 107 (1987), 27-42. |
[5] |
S. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta. Metall., 27 (1979), 1084-1095.doi: 10.1016/0001-6160(79)90196-2. |
[6] |
S. Angenent, J. Mallet-Paret and L. A. Peletier, Stable transition layers in a semilinear boundary value problem, J. Differential Equations, 67 (1987), 212-242.doi: 10.1016/0022-0396(87)90147-1. |
[7] |
H. Berestycki and P.-L.¡¡Lions, Existence of a ground state in nonlinear equations of the Klein-Gordon type, in "Variational Inequalities and Complementarity Problems" (Proc. Internat. School, Erice, 1978), 35-51, Wiley, Chichester, 1980. |
[8] |
L. Bronsard and B. Stoth, On the existence of high multiplicity interfaces, Math. Res. Lett., 3 (1996), 41-50. |
[9] |
E. N. Dancer and J. Wei, On the profile of solutions with two sharp layers to a singularly perturbed semilinear Dirichlet problem, Proc. Roy. Soc. Edinburgh A, 127 (1997), 691-701. |
[10] |
E. N. Dancer and J. Wei, On the location of spikes of solutions with sharp layers for a singularly perburbed semilinear Dirichlet problem, J. Diff. Eqns., 157 (1999), 82-101.doi: 10.1006/jdeq.1998.3619. |
[11] |
E. N. Dancer and S. Yan, Multi-layer solutions for an elliptic problem, J. Diff. Eqns., 194 (2003), 382-405.doi: 10.1016/S0022-0396(03)00176-1. |
[12] |
E. N. Dancer and S. Yan, Construction of various types of solutions for an elliptic problem, Calc. Var. Partial Differential Equations, 20 (2004), 93-118.doi: 10.1007/s00526-003-0229-6. |
[13] |
M. del Pino, Layers with nonsmooth interface in a semilinear elliptic problem, Comm. Partial Differential Equations, 17 (1992), 1695-1708.doi: 10.1080/03605309208820900. |
[14] |
M. del Pino, Radially symmetric internal layers in a semilinear elliptic system, Trans. Amer. Math. Soc., 347 (1995), 4807-4837.doi: 10.2307/2155064. |
[15] |
M. del Pino, M. Kowalczyk and J. Wei, Concentration on curves for nonlinear Schrödinger equations, Comm. Pure Appl. Math., 70 (2007), 113-146.doi: 10.1002/cpa.20135. |
[16] |
M. del Pino, M. Kowalczyk and J. Wei, Resonance and interior layers in an inhomogeneous phase transition model, SIAM J. Math. Anal., 38 (2007), 1542-1564.doi: 10.1137/060649574. |
[17] |
A. S. do Nascimento, Stable transition layers in a semilinear diffusion equation with spatial inhomogeneities in $N$-dimensional domains, J. Differential Equations, 190 (2003), 16-38.doi: 10.1016/S0022-0396(02)00147-X. |
[18] |
Y. Du, The heterogeneous Allen-Cahn equation in a ball: Solutions with layers and spikes, J. Differential Equations, 244 (2008), 117-169.doi: 10.1016/j.jde.2007.10.017. |
[19] |
Y. Du and Z. M. Guo, Boudary layer and spike layer solutions for a bistable elliptic problem with generalized boundary conditions, J. Diff. Eqns., 221 (2006), 102-133.doi: 10.1016/j.jde.2005.08.006. |
[20] |
Y. Du, Z. M. Guo and F. Zhou, Boundary blow-up solutions with interior layers and spikes in a bistable problem, Discrete and Continuous Dynamical Systems, 19 (2007), 271-298.doi: 10.3934/dcds.2007.19.271. |
[21] |
Y. Du and K. Nakashima, Morse index of layered solutions to the heterogeneous Allen-Cahn equation, J. of Differential Equations, 238 (2007), 87-117.doi: 10.1016/j.jde.2007.03.024. |
[22] |
Y. Du and S. Yan, Boundary blow-up solutions with a spike layer, J. Diff. Eqns., 205 (2004), 156-184.doi: 10.1016/j.jde.2004.06.010. |
[23] |
P. C. Fife, Boundary and interior transition layer phenomena for pairs of second-order differential equations, J. Math. Anal. Appl., 54 (1976), 497-521.doi: 10.1016/0022-247X(76)90218-3. |
[24] |
P. Fife and M. W. Greenlee, Interior transition Layers of elliptic boundary value problem with a small parameter, Russian Math. Survey, 29 (1974), 103-131.doi: 10.1070/RM1974v029n04ABEH001291. |
[25] |
G. Flores and P. Padilla, Higher energy solutions in the theory of phase transitions: a variational approach, J. Diff. Eqns., 169 (2001), 190-207.doi: 10.1006/jdeq.2000.3898. |
[26] |
C. Gui and J. Wei, Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Diff. Eqns., 158 (1999), 1-27.doi: 10.1016/S0022-0396(99)80016-3. |
[27] |
J. Jang, On spike solutions of singularly perturbed semilinearly Dirichlet problems, J. Diff. Eqns., 114 (1994), 370-395.doi: 10.1006/jdeq.1994.1154. |
[28] |
J. Hale and K. Sakamoto, Existence and stability of transition layers, Japan J. Appl. Math., 5 (1988), 367-405.doi: 10.1007/BF03167908. |
[29] |
R. V. Kohn and P. Sternberg, Local minimizers and singular perturbations, Proc. Royal Soc. Edinburgh A, 111 (1989), 69-84. |
[30] |
M. Kowalczyk, On the existence and Morse index of solutions to the Allen-Cahn equation in two dimensions, Annali di Matematica Pura ed Applicata, 184 (2005), 17-52.doi: 10.1007/s10231-003-0088-y. |
[31] |
B. M. Levitan and I. S. Sargsjan, "Sturm-Liouville and Dirac Operator," Mathematics and its application (Soviet Series), 59. Kluwer Acadamic Publishers Group, Dordrecht, 1991. |
[32] |
F. Mahmoudi, A. Malchiodi and J. Wei, Transition layer for the heterogeneous Allen-Cahn equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 609-631.doi: 10.1016/j.anihpc.2007.03.008. |
[33] |
A. Malchiodi, W.-M. Ni and J. Wei, Boundary clustered interfaces for the Allen-Cahn equation, Pacific J. Math., 229 (2007), 447-468.doi: 10.2140/pjm.2007.229.447. |
[34] |
A. Malchiodi and J. Wei, Boundary interface for the Allen-Cahn equation, Journal of Fixed Point Theory and Applications, 1 (2007), 305-336.doi: 10.1007/s11784-007-0016-7. |
[35] |
L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rat. Mech. Anal., 98 (1987), 357-383.doi: 10.1007/BF00251230. |
[36] |
K. Nakashima, Multi-layered stationary solutions for a spatially inhomogeneous Allen-Cahn equation, J. Diff. Eqns., 191 (2003), 234-276.doi: 10.1016/S0022-0396(02)00181-X. |
[37] |
K. Nakashima and K. Tanaka, Clustering layers and boundary layers in spatially inhomogeneous phase transition problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 107-143.doi: 10.1016/S0294-1449(02)00008-2. |
[38] |
W. M. Ni, I. Takagi and J. Wei, On the location and profile of intermediate solutions to a singularly perturbed semilinear Dirichlet problem, Duke Math. J., 94 (1998), 597-618.doi: 10.1215/S0012-7094-98-09424-8. |
[39] |
Y. Nishiura and H. Fujii, Stability of singularly perturbed solutions to systems of reaction-diffusion equations, SIAM J. Math. Anal., 18 (1987), 1726-1770.doi: 10.1137/0518124. |
[40] |
F. Pacard and M. Ritoré, From constant mean curvature hypersurfaces to the gradient theory of phase transitions, J. Diff. Geom., 64 (2003), 359-423. |
[41] |
P. Padilla and Y. Tonegawa, On the convergence of stable phase transitions, Comm. Pure Appl. Math., 51 (1998), 551-579.doi: 10.1002/(SICI)1097-0312(199806)51:6<551::AID-CPA1>3.0.CO;2-6. |
[42] |
P. H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation, I, Comm Pure Appl. Math., 56 (2003), 1078-1134.doi: 10.1002/cpa.10087. |
[43] |
P. H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation, II, Calc. Var. Partial Differential Equations, 21 (2004), 157-207. |
[44] |
K. Sakamoto, Construction and stability an alysis of transition layer solutions in reaction-diffusion systems, Tohoku Math. J. (2), 42 (1990), 17-44.doi: 10.2748/tmj/1178227692. |
[45] |
K. Sakamoto, Infinitely many fine modes bifurcating from radially symmetric internal layers, Asymptot. Anal., 42 (2005), 55-104. |
[46] |
P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Rational Mech. Anal., 141 (1998), 375-400.doi: 10.1007/s002050050081. |
[47] |
J. Wei and J. Yang, Solutions with transition layer and spike in an inhomogeneous phase transition model, J. Differential Equations, 246 (2009), 3642-3667.doi: 10.1016/j.jde.2008.12.021. |
[48] |
J. Wei and J. Yang, Toda system and cluster phase transition layers in an inhomogeneous phase transition model, Asymptotic Analysis, 69 (2010), 175-218. |