March  2011, 31(1): 1-23. doi: 10.3934/dcds.2011.31.1

Monostable wavefronts in cooperative Lotka-Volterra systems with nonlocal delays

1. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000

2. 

School of Mathematic and Statistics, Lanzhou University, Lanzhou, Gansu 730000

3. 

Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250

Received  January 2010 Revised  April 2011 Published  June 2011

This paper is concerned with traveling wavefronts in a Lotka-Volterra model with nonlocal delays for two cooperative species. By using comparison principle, some existence and nonexistence results are obtained. If the wave speed is larger than a threshold which can be formulated in terms of basic parameters, we prove the asymptotic stability of traveling wavefronts by the spectral analysis method together with squeezing technique.
Citation: Guo Lin, Wan-Tong Li, Shigui Ruan. Monostable wavefronts in cooperative Lotka-Volterra systems with nonlocal delays. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 1-23. doi: 10.3934/dcds.2011.31.1
References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in, 446 (1975), 5.   Google Scholar

[2]

F. van den Bosch, J. A. J. Metz and O. Diekmann, The velocity of spatial population expansion,, J. Math. Biol., 28 (1990), 529.  doi: 10.1007/BF00164162.  Google Scholar

[3]

N. F. Britton, Spatial structures and periodic traveling waves in an integro-differential reaction-diffusion population model,, SIAM J. Appl. Math., 50 (1990), 1663.  doi: 10.1137/0150099.  Google Scholar

[4]

X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equation,, Adv. Differential Equations, 2 (1997), 125.   Google Scholar

[5]

X. Chen, S.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices,, SIAM J. Math. Anal., 38 (2006), 233.  doi: 10.1137/050627824.  Google Scholar

[6]

T. Faria, W. Huang and J. Wu, Traveling waves for delayed reaction-diffusion equations with global response,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 229.  doi: 10.1098/rspa.2005.1554.  Google Scholar

[7]

K. Gopalsamy, Pursuit-evasion wave trains in prey-predator systems with diffusionally coupled delays,, Bull. Math. Biol., 42 (1980), 871.   Google Scholar

[8]

S. A. Gourley and S. Ruan, Convergence and travelling fronts in functional differential equations with nonlocal terms: A competition model,, SIAM J. Math. Anal., 35 (2003), 806.  doi: 10.1137/S003614100139991.  Google Scholar

[9]

S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread,, in, 48 (2006), 137.   Google Scholar

[10]

J. Huang and X. Zou, Traveling wavefronts in diffusive and cooperative Lotka-Volterra system with delays,, J. Math. Anal. Appl., 271 (2002), 455.  doi: 10.1016/S0022-247X(02)00135-X.  Google Scholar

[11]

W. Huang, Uniqueness of the bistable traveling wave for mutualist species,, J. Dynam. Diff. Eqns., 13 (2001), 147.  doi: 10.1023/A:1009048616476.  Google Scholar

[12]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[13]

W.-T. Li, G. Lin and S. Ruan, Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems,, Nonlinearity, 19 (2006), 1253.  doi: 10.1088/0951-7715/19/6/003.  Google Scholar

[14]

W.-T. Li and Z. Wang, Traveling fronts in diffusive and cooperative Lotka-Volterra system with nonlocal delays,, Z. Angew. Math. Phys., 58 (2007), 571.  doi: 10.1007/s00033-006-5125-4.  Google Scholar

[15]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure Appl. Math., 60 (2007), 1.  doi: 10.1002/cpa.20154.  Google Scholar

[16]

G. Lin and W.-T. Li, Bistable wavefronts in a diffusive and competitive Lotka-Volterra type system with nonlocal delays,, J. Differential Equations, 244 (2008), 487.  doi: 10.1016/j.jde.2007.10.019.  Google Scholar

[17]

G. Lin, W.-T. Li and M. Ma, Traveling wave solutions in delayed reaction-diffusion systems with applications to multi-species models,, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 393.  doi: 10.3934/dcdsb.2010.13.393.  Google Scholar

[18]

S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem,, J. Differential Equations, 171 (2001), 294.  doi: 10.1006/jdeq.2000.3846.  Google Scholar

[19]

S. Ma and J. Wu, Existence, uniqueness and asymptotic stability of traveling wavefronts in a non-local delayed diffusion equation,, J. Dynam. Diff. Eqns., 19 (2007), 391.  doi: 10.1007/s10884-006-9065-7.  Google Scholar

[20]

S. Ma and X. Zou, Propagation and its failure in a lattice delayed differential equation with global interaction,, J. Differential Equations, 212 (2005), 129.  doi: 10.1016/j.jde.2004.07.014.  Google Scholar

[21]

S. Ma and X. Zou, Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay,, J. Differential Equations, 217 (2005), 54.  doi: 10.1016/j.jde.2005.05.004.  Google Scholar

[22]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. I. Local nonlinearity,, J. Differential Equations, 247 (2009), 495.  doi: 10.1016/j.jde.2008.12.026.  Google Scholar

[23]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. II. Nonlocal nonlinearity,, J. Differential Equations, 247 (2009), 511.  doi: 10.1016/j.jde.2008.12.020.  Google Scholar

[24]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1.  doi: 10.2307/2001590.  Google Scholar

[25]

K. Mischaikow and V. Hutson, Travelling waves for mutualist species,, SIAM J. Math. Anal., 24 (1993), 987.  doi: 10.1137/0524059.  Google Scholar

[26]

C. Ou and J. Wu, Persistence of wavefronts in delayed nonlocal reaction-diffusion equations,, J. Differential Equations, 235 (2007), 219.  doi: 10.1016/j.jde.2006.12.010.  Google Scholar

[27]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Mathematical Sciences, 44 (1983).   Google Scholar

[28]

S. Ruan, Spatial-temporal dynamics in nonlocal epidemiological models,, in, (2007), 97.   Google Scholar

[29]

S. Ruan and J. Wu, Reaction-diffusion equations with infinite delay,, Canad. Appl. Math. Quart., 2 (1994), 485.   Google Scholar

[30]

S. Ruan and D. Xiao, Stability of steady states and existence of travelling waves in a vector-disease model,, Proc. R. Soc. Edinburgh Sect. A, 134 (2004), 991.  doi: 10.1017/S0308210500003590.  Google Scholar

[31]

H. L. Smith and X.-Q. Zhao, Global asymptotic stability of traveling waves in delayed reaction-diffusion equations,, SIAM J. Math. Anal., 31 (2000), 514.  doi: 10.1137/S0036141098346785.  Google Scholar

[32]

J. Smoller, "Shock Waves and Reaction-Diffusion Equations,", 2nd edition, 258 (1994).   Google Scholar

[33]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models,, J. Differential Equations, 195 (2003), 430.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[34]

A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems,", Translations of Mathematical Monographs, 140 (1994).   Google Scholar

[35]

Z. Wang, W.-T. Li and S. Ruan, Travelling wave fronts of reaction-diffusion systems with spatio-temporal delays,, J. Differential Equations, 222 (2006), 185.  doi: 10.1016/j.jde.2005.08.010.  Google Scholar

[36]

Z. Wang, W.-T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay,, J. Differential Equations, 238 (2007), 153.  doi: 10.1016/j.jde.2007.03.025.  Google Scholar

[37]

Z. Wang, W.-T. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects,, J. Dynam. Diff. Eqns., 20 (2008), 573.  doi: 10.1007/s10884-008-9103-8.  Google Scholar

[38]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183.  doi: 10.1007/s002850200145.  Google Scholar

[39]

J. Wu, "Theory and Applications of Partial Functional-Differential Equations,", Applied Mathematical Sciences, 119 (1996).   Google Scholar

[40]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay,, J. Dynam. Diff. Eqns., 13 (2001), 651.   Google Scholar

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in, 446 (1975), 5.   Google Scholar

[2]

F. van den Bosch, J. A. J. Metz and O. Diekmann, The velocity of spatial population expansion,, J. Math. Biol., 28 (1990), 529.  doi: 10.1007/BF00164162.  Google Scholar

[3]

N. F. Britton, Spatial structures and periodic traveling waves in an integro-differential reaction-diffusion population model,, SIAM J. Appl. Math., 50 (1990), 1663.  doi: 10.1137/0150099.  Google Scholar

[4]

X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equation,, Adv. Differential Equations, 2 (1997), 125.   Google Scholar

[5]

X. Chen, S.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices,, SIAM J. Math. Anal., 38 (2006), 233.  doi: 10.1137/050627824.  Google Scholar

[6]

T. Faria, W. Huang and J. Wu, Traveling waves for delayed reaction-diffusion equations with global response,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 229.  doi: 10.1098/rspa.2005.1554.  Google Scholar

[7]

K. Gopalsamy, Pursuit-evasion wave trains in prey-predator systems with diffusionally coupled delays,, Bull. Math. Biol., 42 (1980), 871.   Google Scholar

[8]

S. A. Gourley and S. Ruan, Convergence and travelling fronts in functional differential equations with nonlocal terms: A competition model,, SIAM J. Math. Anal., 35 (2003), 806.  doi: 10.1137/S003614100139991.  Google Scholar

[9]

S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread,, in, 48 (2006), 137.   Google Scholar

[10]

J. Huang and X. Zou, Traveling wavefronts in diffusive and cooperative Lotka-Volterra system with delays,, J. Math. Anal. Appl., 271 (2002), 455.  doi: 10.1016/S0022-247X(02)00135-X.  Google Scholar

[11]

W. Huang, Uniqueness of the bistable traveling wave for mutualist species,, J. Dynam. Diff. Eqns., 13 (2001), 147.  doi: 10.1023/A:1009048616476.  Google Scholar

[12]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[13]

W.-T. Li, G. Lin and S. Ruan, Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems,, Nonlinearity, 19 (2006), 1253.  doi: 10.1088/0951-7715/19/6/003.  Google Scholar

[14]

W.-T. Li and Z. Wang, Traveling fronts in diffusive and cooperative Lotka-Volterra system with nonlocal delays,, Z. Angew. Math. Phys., 58 (2007), 571.  doi: 10.1007/s00033-006-5125-4.  Google Scholar

[15]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure Appl. Math., 60 (2007), 1.  doi: 10.1002/cpa.20154.  Google Scholar

[16]

G. Lin and W.-T. Li, Bistable wavefronts in a diffusive and competitive Lotka-Volterra type system with nonlocal delays,, J. Differential Equations, 244 (2008), 487.  doi: 10.1016/j.jde.2007.10.019.  Google Scholar

[17]

G. Lin, W.-T. Li and M. Ma, Traveling wave solutions in delayed reaction-diffusion systems with applications to multi-species models,, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 393.  doi: 10.3934/dcdsb.2010.13.393.  Google Scholar

[18]

S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem,, J. Differential Equations, 171 (2001), 294.  doi: 10.1006/jdeq.2000.3846.  Google Scholar

[19]

S. Ma and J. Wu, Existence, uniqueness and asymptotic stability of traveling wavefronts in a non-local delayed diffusion equation,, J. Dynam. Diff. Eqns., 19 (2007), 391.  doi: 10.1007/s10884-006-9065-7.  Google Scholar

[20]

S. Ma and X. Zou, Propagation and its failure in a lattice delayed differential equation with global interaction,, J. Differential Equations, 212 (2005), 129.  doi: 10.1016/j.jde.2004.07.014.  Google Scholar

[21]

S. Ma and X. Zou, Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay,, J. Differential Equations, 217 (2005), 54.  doi: 10.1016/j.jde.2005.05.004.  Google Scholar

[22]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. I. Local nonlinearity,, J. Differential Equations, 247 (2009), 495.  doi: 10.1016/j.jde.2008.12.026.  Google Scholar

[23]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. II. Nonlocal nonlinearity,, J. Differential Equations, 247 (2009), 511.  doi: 10.1016/j.jde.2008.12.020.  Google Scholar

[24]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1.  doi: 10.2307/2001590.  Google Scholar

[25]

K. Mischaikow and V. Hutson, Travelling waves for mutualist species,, SIAM J. Math. Anal., 24 (1993), 987.  doi: 10.1137/0524059.  Google Scholar

[26]

C. Ou and J. Wu, Persistence of wavefronts in delayed nonlocal reaction-diffusion equations,, J. Differential Equations, 235 (2007), 219.  doi: 10.1016/j.jde.2006.12.010.  Google Scholar

[27]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Mathematical Sciences, 44 (1983).   Google Scholar

[28]

S. Ruan, Spatial-temporal dynamics in nonlocal epidemiological models,, in, (2007), 97.   Google Scholar

[29]

S. Ruan and J. Wu, Reaction-diffusion equations with infinite delay,, Canad. Appl. Math. Quart., 2 (1994), 485.   Google Scholar

[30]

S. Ruan and D. Xiao, Stability of steady states and existence of travelling waves in a vector-disease model,, Proc. R. Soc. Edinburgh Sect. A, 134 (2004), 991.  doi: 10.1017/S0308210500003590.  Google Scholar

[31]

H. L. Smith and X.-Q. Zhao, Global asymptotic stability of traveling waves in delayed reaction-diffusion equations,, SIAM J. Math. Anal., 31 (2000), 514.  doi: 10.1137/S0036141098346785.  Google Scholar

[32]

J. Smoller, "Shock Waves and Reaction-Diffusion Equations,", 2nd edition, 258 (1994).   Google Scholar

[33]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models,, J. Differential Equations, 195 (2003), 430.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[34]

A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems,", Translations of Mathematical Monographs, 140 (1994).   Google Scholar

[35]

Z. Wang, W.-T. Li and S. Ruan, Travelling wave fronts of reaction-diffusion systems with spatio-temporal delays,, J. Differential Equations, 222 (2006), 185.  doi: 10.1016/j.jde.2005.08.010.  Google Scholar

[36]

Z. Wang, W.-T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay,, J. Differential Equations, 238 (2007), 153.  doi: 10.1016/j.jde.2007.03.025.  Google Scholar

[37]

Z. Wang, W.-T. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects,, J. Dynam. Diff. Eqns., 20 (2008), 573.  doi: 10.1007/s10884-008-9103-8.  Google Scholar

[38]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183.  doi: 10.1007/s002850200145.  Google Scholar

[39]

J. Wu, "Theory and Applications of Partial Functional-Differential Equations,", Applied Mathematical Sciences, 119 (1996).   Google Scholar

[40]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay,, J. Dynam. Diff. Eqns., 13 (2001), 651.   Google Scholar

[1]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[2]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[3]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[4]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[5]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[6]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[7]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[8]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[9]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[10]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[11]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[12]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[13]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[14]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[15]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[16]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[17]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[18]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[19]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[20]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (34)

Other articles
by authors

[Back to Top]