March  2011, 31(1): 1-23. doi: 10.3934/dcds.2011.31.1

Monostable wavefronts in cooperative Lotka-Volterra systems with nonlocal delays

1. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000

2. 

School of Mathematic and Statistics, Lanzhou University, Lanzhou, Gansu 730000

3. 

Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250

Received  January 2010 Revised  April 2011 Published  June 2011

This paper is concerned with traveling wavefronts in a Lotka-Volterra model with nonlocal delays for two cooperative species. By using comparison principle, some existence and nonexistence results are obtained. If the wave speed is larger than a threshold which can be formulated in terms of basic parameters, we prove the asymptotic stability of traveling wavefronts by the spectral analysis method together with squeezing technique.
Citation: Guo Lin, Wan-Tong Li, Shigui Ruan. Monostable wavefronts in cooperative Lotka-Volterra systems with nonlocal delays. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 1-23. doi: 10.3934/dcds.2011.31.1
References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in, 446 (1975), 5. Google Scholar

[2]

F. van den Bosch, J. A. J. Metz and O. Diekmann, The velocity of spatial population expansion,, J. Math. Biol., 28 (1990), 529. doi: 10.1007/BF00164162. Google Scholar

[3]

N. F. Britton, Spatial structures and periodic traveling waves in an integro-differential reaction-diffusion population model,, SIAM J. Appl. Math., 50 (1990), 1663. doi: 10.1137/0150099. Google Scholar

[4]

X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equation,, Adv. Differential Equations, 2 (1997), 125. Google Scholar

[5]

X. Chen, S.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices,, SIAM J. Math. Anal., 38 (2006), 233. doi: 10.1137/050627824. Google Scholar

[6]

T. Faria, W. Huang and J. Wu, Traveling waves for delayed reaction-diffusion equations with global response,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 229. doi: 10.1098/rspa.2005.1554. Google Scholar

[7]

K. Gopalsamy, Pursuit-evasion wave trains in prey-predator systems with diffusionally coupled delays,, Bull. Math. Biol., 42 (1980), 871. Google Scholar

[8]

S. A. Gourley and S. Ruan, Convergence and travelling fronts in functional differential equations with nonlocal terms: A competition model,, SIAM J. Math. Anal., 35 (2003), 806. doi: 10.1137/S003614100139991. Google Scholar

[9]

S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread,, in, 48 (2006), 137. Google Scholar

[10]

J. Huang and X. Zou, Traveling wavefronts in diffusive and cooperative Lotka-Volterra system with delays,, J. Math. Anal. Appl., 271 (2002), 455. doi: 10.1016/S0022-247X(02)00135-X. Google Scholar

[11]

W. Huang, Uniqueness of the bistable traveling wave for mutualist species,, J. Dynam. Diff. Eqns., 13 (2001), 147. doi: 10.1023/A:1009048616476. Google Scholar

[12]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82. doi: 10.1016/j.mbs.2005.03.008. Google Scholar

[13]

W.-T. Li, G. Lin and S. Ruan, Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems,, Nonlinearity, 19 (2006), 1253. doi: 10.1088/0951-7715/19/6/003. Google Scholar

[14]

W.-T. Li and Z. Wang, Traveling fronts in diffusive and cooperative Lotka-Volterra system with nonlocal delays,, Z. Angew. Math. Phys., 58 (2007), 571. doi: 10.1007/s00033-006-5125-4. Google Scholar

[15]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure Appl. Math., 60 (2007), 1. doi: 10.1002/cpa.20154. Google Scholar

[16]

G. Lin and W.-T. Li, Bistable wavefronts in a diffusive and competitive Lotka-Volterra type system with nonlocal delays,, J. Differential Equations, 244 (2008), 487. doi: 10.1016/j.jde.2007.10.019. Google Scholar

[17]

G. Lin, W.-T. Li and M. Ma, Traveling wave solutions in delayed reaction-diffusion systems with applications to multi-species models,, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 393. doi: 10.3934/dcdsb.2010.13.393. Google Scholar

[18]

S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem,, J. Differential Equations, 171 (2001), 294. doi: 10.1006/jdeq.2000.3846. Google Scholar

[19]

S. Ma and J. Wu, Existence, uniqueness and asymptotic stability of traveling wavefronts in a non-local delayed diffusion equation,, J. Dynam. Diff. Eqns., 19 (2007), 391. doi: 10.1007/s10884-006-9065-7. Google Scholar

[20]

S. Ma and X. Zou, Propagation and its failure in a lattice delayed differential equation with global interaction,, J. Differential Equations, 212 (2005), 129. doi: 10.1016/j.jde.2004.07.014. Google Scholar

[21]

S. Ma and X. Zou, Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay,, J. Differential Equations, 217 (2005), 54. doi: 10.1016/j.jde.2005.05.004. Google Scholar

[22]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. I. Local nonlinearity,, J. Differential Equations, 247 (2009), 495. doi: 10.1016/j.jde.2008.12.026. Google Scholar

[23]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. II. Nonlocal nonlinearity,, J. Differential Equations, 247 (2009), 511. doi: 10.1016/j.jde.2008.12.020. Google Scholar

[24]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1. doi: 10.2307/2001590. Google Scholar

[25]

K. Mischaikow and V. Hutson, Travelling waves for mutualist species,, SIAM J. Math. Anal., 24 (1993), 987. doi: 10.1137/0524059. Google Scholar

[26]

C. Ou and J. Wu, Persistence of wavefronts in delayed nonlocal reaction-diffusion equations,, J. Differential Equations, 235 (2007), 219. doi: 10.1016/j.jde.2006.12.010. Google Scholar

[27]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Mathematical Sciences, 44 (1983). Google Scholar

[28]

S. Ruan, Spatial-temporal dynamics in nonlocal epidemiological models,, in, (2007), 97. Google Scholar

[29]

S. Ruan and J. Wu, Reaction-diffusion equations with infinite delay,, Canad. Appl. Math. Quart., 2 (1994), 485. Google Scholar

[30]

S. Ruan and D. Xiao, Stability of steady states and existence of travelling waves in a vector-disease model,, Proc. R. Soc. Edinburgh Sect. A, 134 (2004), 991. doi: 10.1017/S0308210500003590. Google Scholar

[31]

H. L. Smith and X.-Q. Zhao, Global asymptotic stability of traveling waves in delayed reaction-diffusion equations,, SIAM J. Math. Anal., 31 (2000), 514. doi: 10.1137/S0036141098346785. Google Scholar

[32]

J. Smoller, "Shock Waves and Reaction-Diffusion Equations,", 2nd edition, 258 (1994). Google Scholar

[33]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models,, J. Differential Equations, 195 (2003), 430. doi: 10.1016/S0022-0396(03)00175-X. Google Scholar

[34]

A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems,", Translations of Mathematical Monographs, 140 (1994). Google Scholar

[35]

Z. Wang, W.-T. Li and S. Ruan, Travelling wave fronts of reaction-diffusion systems with spatio-temporal delays,, J. Differential Equations, 222 (2006), 185. doi: 10.1016/j.jde.2005.08.010. Google Scholar

[36]

Z. Wang, W.-T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay,, J. Differential Equations, 238 (2007), 153. doi: 10.1016/j.jde.2007.03.025. Google Scholar

[37]

Z. Wang, W.-T. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects,, J. Dynam. Diff. Eqns., 20 (2008), 573. doi: 10.1007/s10884-008-9103-8. Google Scholar

[38]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183. doi: 10.1007/s002850200145. Google Scholar

[39]

J. Wu, "Theory and Applications of Partial Functional-Differential Equations,", Applied Mathematical Sciences, 119 (1996). Google Scholar

[40]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay,, J. Dynam. Diff. Eqns., 13 (2001), 651. Google Scholar

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in, 446 (1975), 5. Google Scholar

[2]

F. van den Bosch, J. A. J. Metz and O. Diekmann, The velocity of spatial population expansion,, J. Math. Biol., 28 (1990), 529. doi: 10.1007/BF00164162. Google Scholar

[3]

N. F. Britton, Spatial structures and periodic traveling waves in an integro-differential reaction-diffusion population model,, SIAM J. Appl. Math., 50 (1990), 1663. doi: 10.1137/0150099. Google Scholar

[4]

X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equation,, Adv. Differential Equations, 2 (1997), 125. Google Scholar

[5]

X. Chen, S.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices,, SIAM J. Math. Anal., 38 (2006), 233. doi: 10.1137/050627824. Google Scholar

[6]

T. Faria, W. Huang and J. Wu, Traveling waves for delayed reaction-diffusion equations with global response,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 229. doi: 10.1098/rspa.2005.1554. Google Scholar

[7]

K. Gopalsamy, Pursuit-evasion wave trains in prey-predator systems with diffusionally coupled delays,, Bull. Math. Biol., 42 (1980), 871. Google Scholar

[8]

S. A. Gourley and S. Ruan, Convergence and travelling fronts in functional differential equations with nonlocal terms: A competition model,, SIAM J. Math. Anal., 35 (2003), 806. doi: 10.1137/S003614100139991. Google Scholar

[9]

S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread,, in, 48 (2006), 137. Google Scholar

[10]

J. Huang and X. Zou, Traveling wavefronts in diffusive and cooperative Lotka-Volterra system with delays,, J. Math. Anal. Appl., 271 (2002), 455. doi: 10.1016/S0022-247X(02)00135-X. Google Scholar

[11]

W. Huang, Uniqueness of the bistable traveling wave for mutualist species,, J. Dynam. Diff. Eqns., 13 (2001), 147. doi: 10.1023/A:1009048616476. Google Scholar

[12]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82. doi: 10.1016/j.mbs.2005.03.008. Google Scholar

[13]

W.-T. Li, G. Lin and S. Ruan, Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems,, Nonlinearity, 19 (2006), 1253. doi: 10.1088/0951-7715/19/6/003. Google Scholar

[14]

W.-T. Li and Z. Wang, Traveling fronts in diffusive and cooperative Lotka-Volterra system with nonlocal delays,, Z. Angew. Math. Phys., 58 (2007), 571. doi: 10.1007/s00033-006-5125-4. Google Scholar

[15]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure Appl. Math., 60 (2007), 1. doi: 10.1002/cpa.20154. Google Scholar

[16]

G. Lin and W.-T. Li, Bistable wavefronts in a diffusive and competitive Lotka-Volterra type system with nonlocal delays,, J. Differential Equations, 244 (2008), 487. doi: 10.1016/j.jde.2007.10.019. Google Scholar

[17]

G. Lin, W.-T. Li and M. Ma, Traveling wave solutions in delayed reaction-diffusion systems with applications to multi-species models,, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 393. doi: 10.3934/dcdsb.2010.13.393. Google Scholar

[18]

S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem,, J. Differential Equations, 171 (2001), 294. doi: 10.1006/jdeq.2000.3846. Google Scholar

[19]

S. Ma and J. Wu, Existence, uniqueness and asymptotic stability of traveling wavefronts in a non-local delayed diffusion equation,, J. Dynam. Diff. Eqns., 19 (2007), 391. doi: 10.1007/s10884-006-9065-7. Google Scholar

[20]

S. Ma and X. Zou, Propagation and its failure in a lattice delayed differential equation with global interaction,, J. Differential Equations, 212 (2005), 129. doi: 10.1016/j.jde.2004.07.014. Google Scholar

[21]

S. Ma and X. Zou, Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay,, J. Differential Equations, 217 (2005), 54. doi: 10.1016/j.jde.2005.05.004. Google Scholar

[22]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. I. Local nonlinearity,, J. Differential Equations, 247 (2009), 495. doi: 10.1016/j.jde.2008.12.026. Google Scholar

[23]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. II. Nonlocal nonlinearity,, J. Differential Equations, 247 (2009), 511. doi: 10.1016/j.jde.2008.12.020. Google Scholar

[24]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1. doi: 10.2307/2001590. Google Scholar

[25]

K. Mischaikow and V. Hutson, Travelling waves for mutualist species,, SIAM J. Math. Anal., 24 (1993), 987. doi: 10.1137/0524059. Google Scholar

[26]

C. Ou and J. Wu, Persistence of wavefronts in delayed nonlocal reaction-diffusion equations,, J. Differential Equations, 235 (2007), 219. doi: 10.1016/j.jde.2006.12.010. Google Scholar

[27]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Mathematical Sciences, 44 (1983). Google Scholar

[28]

S. Ruan, Spatial-temporal dynamics in nonlocal epidemiological models,, in, (2007), 97. Google Scholar

[29]

S. Ruan and J. Wu, Reaction-diffusion equations with infinite delay,, Canad. Appl. Math. Quart., 2 (1994), 485. Google Scholar

[30]

S. Ruan and D. Xiao, Stability of steady states and existence of travelling waves in a vector-disease model,, Proc. R. Soc. Edinburgh Sect. A, 134 (2004), 991. doi: 10.1017/S0308210500003590. Google Scholar

[31]

H. L. Smith and X.-Q. Zhao, Global asymptotic stability of traveling waves in delayed reaction-diffusion equations,, SIAM J. Math. Anal., 31 (2000), 514. doi: 10.1137/S0036141098346785. Google Scholar

[32]

J. Smoller, "Shock Waves and Reaction-Diffusion Equations,", 2nd edition, 258 (1994). Google Scholar

[33]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models,, J. Differential Equations, 195 (2003), 430. doi: 10.1016/S0022-0396(03)00175-X. Google Scholar

[34]

A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems,", Translations of Mathematical Monographs, 140 (1994). Google Scholar

[35]

Z. Wang, W.-T. Li and S. Ruan, Travelling wave fronts of reaction-diffusion systems with spatio-temporal delays,, J. Differential Equations, 222 (2006), 185. doi: 10.1016/j.jde.2005.08.010. Google Scholar

[36]

Z. Wang, W.-T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay,, J. Differential Equations, 238 (2007), 153. doi: 10.1016/j.jde.2007.03.025. Google Scholar

[37]

Z. Wang, W.-T. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects,, J. Dynam. Diff. Eqns., 20 (2008), 573. doi: 10.1007/s10884-008-9103-8. Google Scholar

[38]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183. doi: 10.1007/s002850200145. Google Scholar

[39]

J. Wu, "Theory and Applications of Partial Functional-Differential Equations,", Applied Mathematical Sciences, 119 (1996). Google Scholar

[40]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay,, J. Dynam. Diff. Eqns., 13 (2001), 651. Google Scholar

[1]

Shiwang Ma, Xiao-Qiang Zhao. Global asymptotic stability of minimal fronts in monostable lattice equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 259-275. doi: 10.3934/dcds.2008.21.259

[2]

Hongmei Cheng, Rong Yuan. Existence and asymptotic stability of traveling fronts for nonlocal monostable evolution equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 3007-3022. doi: 10.3934/dcdsb.2017160

[3]

Hans Weinberger. On sufficient conditions for a linearly determinate spreading speed. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2267-2280. doi: 10.3934/dcdsb.2012.17.2267

[4]

Kun Li, Jianhua Huang, Xiong Li. Traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2091-2119. doi: 10.3934/dcdsb.2018227

[5]

Xiaowei Tang, Xilin Fu. New comparison principle with Razumikhin condition for impulsive infinite delay differential systems. Conference Publications, 2009, 2009 (Special) : 739-743. doi: 10.3934/proc.2009.2009.739

[6]

Dashun Xu, Xiao-Qiang Zhao. Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1043-1056. doi: 10.3934/dcdsb.2005.5.1043

[7]

Kun Li, Jianhua Huang, Xiong Li. Asymptotic behavior and uniqueness of traveling wave fronts in a delayed nonlocal dispersal competitive system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 131-150. doi: 10.3934/cpaa.2017006

[8]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[9]

Guangying Lv, Mingxin Wang. Existence, uniqueness and stability of traveling wave fronts of discrete quasi-linear equations with delay. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 415-433. doi: 10.3934/dcdsb.2010.13.415

[10]

Zhiguo Wang, Hua Nie, Yihong Du. Asymptotic spreading speed for the weak competition system with a free boundary. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5223-5262. doi: 10.3934/dcds.2019213

[11]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[12]

Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347

[13]

Jason Metcalfe, David Spencer. Global existence for a coupled wave system related to the Strauss conjecture. Communications on Pure & Applied Analysis, 2018, 17 (2) : 593-604. doi: 10.3934/cpaa.2018032

[14]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

[15]

Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1361-1375. doi: 10.3934/cpaa.2011.10.1361

[16]

Yan Cui, Zhiqiang Wang. Asymptotic stability of wave equations coupled by velocities. Mathematical Control & Related Fields, 2016, 6 (3) : 429-446. doi: 10.3934/mcrf.2016010

[17]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[18]

Eugen Stumpf. On a delay differential equation arising from a car-following model: Wavefront solutions with constant-speed and their stability. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3317-3340. doi: 10.3934/dcdsb.2017139

[19]

Yu-Juan Sun, Li Zhang, Wan-Tong Li, Zhi-Cheng Wang. Entire solutions in nonlocal monostable equations: Asymmetric case. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1049-1072. doi: 10.3934/cpaa.2019051

[20]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]