December  2011, 31(4): 1039-1051. doi: 10.3934/dcds.2011.31.1039

On some frictional contact problems with velocity condition for elastic and visco-elastic materials

1. 

University of La Réunion, PIMENT EA4518, 97715 Saint-Denis Messag cedex 9 La Réunion, France, France, France

Received  October 2009 Revised  May 2010 Published  September 2011

We study the evolution of a class of quasistatic problems, which describe frictional contact between a body and a foundation. The constitutive law of the materials is elastic, or visco-elastic: with short or long memory, and the contact is modelled by a general subdifferential condition on the velocity. We derive weak formulations for the models and establish existence and uniqueness results. The proofs are based on evolution variational inequalities, in the framework of monotone operators and $fi$xed point methods. We show the approach of the viscoelastic solutions to the corresponding elastic solutions, when the viscosity tends to zero. Finally we also study the approach to short memory visco-elasticity when the long memory relaxation coefficients vanish.
Citation: Khalid Addi, Oanh Chau, Daniel Goeleven. On some frictional contact problems with velocity condition for elastic and visco-elastic materials. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1039-1051. doi: 10.3934/dcds.2011.31.1039
References:
[1]

L.-E. Andersson, A global existence result for a quasistatic contact problem with friction,, Advances in Mathematical Sciences ans Applications, 5 (1995), 249.

[2]

B. Awbi, El. H. Essoufi and M. Sofonea, A viscoelastic contact problem with normal damped response and friction,, Annales Polonici Mathematici, 75 (2000), 233.

[3]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces,", Translated from the Romanian, (1976).

[4]

N. Bourbaki, "Éléments de Mathématiques,", Première Partie, (1961).

[5]

H. Brézis, Équations et inéquations non linéaires dans les espaces vectoriels en dualité,, Ann. Inst. Fourier (Grenoble), 18 (1968), 115. doi: 10.5802/aif.280.

[6]

H. Brézis, Problèmes unilatéraux,, J. Math. Pures et Appli, 51 (1972), 1.

[7]

F. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces,, in, (1968), 1.

[8]

O. Chau, R. Oujja and M. Rochdi, A mathematical analysis of a dynamical frictional contact model in thermoviscoelasticity,, Discrete and Continuous Dynamical Systems, 1 (2008), 61.

[9]

O. Chau, D. Motreanu and M. Sofonea, Quasistatic frictional problems for elastic and viscoelastic materials,, Applications of Mathematics, 47 (2002), 341. doi: 10.1023/A:1021753722771.

[10]

O. Chau and M. Rochdi, On a dynamic bilateral contact problem with friction for viscoelastic materials,, Int. J. of Appli. Math. and Mech, 2 (2006), 41.

[11]

P. G. Ciarlet, "Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity,", Studies in Mathematics and its Applications, 20 (1988).

[12]

M. Cocu, E. Pratt and M. Raous, Formulation and approximation of quasistatic frictional contact,, Int. J. Engn. Sci, 34 (1996), 783. doi: 10.1016/0020-7225(95)00121-2.

[13]

G. Duvaut and J.-L. Lions, "Inequalities in Mechanics and Physics,", Grundlehren der Mathematischen Wissenschaften, 219 (1976).

[14]

C. Eck and J. Jarušek, Dynamic contact problems with small Coulomb friction for viscoelastic bodies. Existence of solutions,, Mathematical models and Methods in Applied Sciences, 9 (1999), 11. doi: 10.1142/S0218202599000038.

[15]

H. Fraysse and J. M. Arnaudiès, "Cours de Mathématiques,", Dunod, (1999).

[16]

D. Goeleven, D. Motreanu, Y. Dumont and M. Rochdi, "Variational and Hemivariational Inequalities: Theory, Methods and Applications, Volume I: Unilateral Analysis and Unilateral Mechanics,", Nonconvex Optimization and its Applications, 69 (2003).

[17]

I. Hlaváček, J. Haslinger, J. Necăs and J. Lovíšek, "Solution of Variational Inequalities in Mechanics,", Applied Mathematical Sciences, 66 (1988).

[18]

W. Han and B. D. Reddy, "Plasticity. Mathematical Theory and Numerical Analysis,", Interdisciplinary Applied Mathematics, 9 (1999).

[19]

J. Jarušek, Dynamic contact problems with given friction for viscoelastic bodies,, Czechoslovak Mathematical Journal, 46 (1996), 475.

[20]

N. Kikuchi and J. T. Oden, "Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods,", SIAM Studies in Applied Mathematics, 8 (1988).

[21]

J. L. Lions and G. Stampacchia, Variational inequalities,, Commun. Pure Appl. Math., 20 (1967), 493. doi: 10.1002/cpa.3160200302.

[22]

J. A. C. Martins and J. T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws,, Nonlin. Anal., 11 (1987), 407. doi: 10.1016/0362-546X(87)90055-1.

[23]

J. Nečas and I. Hlavaček, "Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction,", Elsevier, (1981).

[24]

P. D. Panagiotopoulos, "Inequality Problems in Meechanical and Applications. Convex and Nonconvex Energy Functions,", Birkhäuser Boston, (1985).

[25]

P. D. Panagiotopoulos, "Hemivariational Inequalities, Applications in Mechanics and Engineering,", Springer-Verlag, (1993).

[26]

M. Raous, M. Jean and J. J. Moreau, eds., "Contact Mechanics,", Plenum Press, (1995).

[27]

M. Rochdi, M. Shillor and M. Sofonea, Quasistatic viscoelastic contact with normal compliance and friction,, Journal of Elasticity, 51 (1998), 105. doi: 10.1023/A:1007413119583.

[28]

E. Zeidler, "Nonlinear Functional Analysis and its Applications,", Springer-Verlag, (1997).

show all references

References:
[1]

L.-E. Andersson, A global existence result for a quasistatic contact problem with friction,, Advances in Mathematical Sciences ans Applications, 5 (1995), 249.

[2]

B. Awbi, El. H. Essoufi and M. Sofonea, A viscoelastic contact problem with normal damped response and friction,, Annales Polonici Mathematici, 75 (2000), 233.

[3]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces,", Translated from the Romanian, (1976).

[4]

N. Bourbaki, "Éléments de Mathématiques,", Première Partie, (1961).

[5]

H. Brézis, Équations et inéquations non linéaires dans les espaces vectoriels en dualité,, Ann. Inst. Fourier (Grenoble), 18 (1968), 115. doi: 10.5802/aif.280.

[6]

H. Brézis, Problèmes unilatéraux,, J. Math. Pures et Appli, 51 (1972), 1.

[7]

F. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces,, in, (1968), 1.

[8]

O. Chau, R. Oujja and M. Rochdi, A mathematical analysis of a dynamical frictional contact model in thermoviscoelasticity,, Discrete and Continuous Dynamical Systems, 1 (2008), 61.

[9]

O. Chau, D. Motreanu and M. Sofonea, Quasistatic frictional problems for elastic and viscoelastic materials,, Applications of Mathematics, 47 (2002), 341. doi: 10.1023/A:1021753722771.

[10]

O. Chau and M. Rochdi, On a dynamic bilateral contact problem with friction for viscoelastic materials,, Int. J. of Appli. Math. and Mech, 2 (2006), 41.

[11]

P. G. Ciarlet, "Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity,", Studies in Mathematics and its Applications, 20 (1988).

[12]

M. Cocu, E. Pratt and M. Raous, Formulation and approximation of quasistatic frictional contact,, Int. J. Engn. Sci, 34 (1996), 783. doi: 10.1016/0020-7225(95)00121-2.

[13]

G. Duvaut and J.-L. Lions, "Inequalities in Mechanics and Physics,", Grundlehren der Mathematischen Wissenschaften, 219 (1976).

[14]

C. Eck and J. Jarušek, Dynamic contact problems with small Coulomb friction for viscoelastic bodies. Existence of solutions,, Mathematical models and Methods in Applied Sciences, 9 (1999), 11. doi: 10.1142/S0218202599000038.

[15]

H. Fraysse and J. M. Arnaudiès, "Cours de Mathématiques,", Dunod, (1999).

[16]

D. Goeleven, D. Motreanu, Y. Dumont and M. Rochdi, "Variational and Hemivariational Inequalities: Theory, Methods and Applications, Volume I: Unilateral Analysis and Unilateral Mechanics,", Nonconvex Optimization and its Applications, 69 (2003).

[17]

I. Hlaváček, J. Haslinger, J. Necăs and J. Lovíšek, "Solution of Variational Inequalities in Mechanics,", Applied Mathematical Sciences, 66 (1988).

[18]

W. Han and B. D. Reddy, "Plasticity. Mathematical Theory and Numerical Analysis,", Interdisciplinary Applied Mathematics, 9 (1999).

[19]

J. Jarušek, Dynamic contact problems with given friction for viscoelastic bodies,, Czechoslovak Mathematical Journal, 46 (1996), 475.

[20]

N. Kikuchi and J. T. Oden, "Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods,", SIAM Studies in Applied Mathematics, 8 (1988).

[21]

J. L. Lions and G. Stampacchia, Variational inequalities,, Commun. Pure Appl. Math., 20 (1967), 493. doi: 10.1002/cpa.3160200302.

[22]

J. A. C. Martins and J. T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws,, Nonlin. Anal., 11 (1987), 407. doi: 10.1016/0362-546X(87)90055-1.

[23]

J. Nečas and I. Hlavaček, "Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction,", Elsevier, (1981).

[24]

P. D. Panagiotopoulos, "Inequality Problems in Meechanical and Applications. Convex and Nonconvex Energy Functions,", Birkhäuser Boston, (1985).

[25]

P. D. Panagiotopoulos, "Hemivariational Inequalities, Applications in Mechanics and Engineering,", Springer-Verlag, (1993).

[26]

M. Raous, M. Jean and J. J. Moreau, eds., "Contact Mechanics,", Plenum Press, (1995).

[27]

M. Rochdi, M. Shillor and M. Sofonea, Quasistatic viscoelastic contact with normal compliance and friction,, Journal of Elasticity, 51 (1998), 105. doi: 10.1023/A:1007413119583.

[28]

E. Zeidler, "Nonlinear Functional Analysis and its Applications,", Springer-Verlag, (1997).

[1]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[2]

Linglong Du. Long time behavior for the visco-elastic damped wave equation in $\mathbb{R}^n_+$ and the boundary effect. Networks & Heterogeneous Media, 2018, 13 (4) : 549-565. doi: 10.3934/nhm.2018025

[3]

Maria-Magdalena Boureanu, Andaluzia Matei, Mircea Sofonea. Analysis of a contact problem for electro-elastic-visco-plastic materials. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1185-1203. doi: 10.3934/cpaa.2012.11.1185

[4]

Grigory Panasenko, Ruxandra Stavre. Asymptotic analysis of a non-periodic flow in a thin channel with visco-elastic wall. Networks & Heterogeneous Media, 2008, 3 (3) : 651-673. doi: 10.3934/nhm.2008.3.651

[5]

Daniele Davino, Ciro Visone. Rate-independent memory in magneto-elastic materials. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 649-691. doi: 10.3934/dcdss.2015.8.649

[6]

Alessia Berti, Claudio Giorgi, Elena Vuk. Free energies and pseudo-elastic transitions for shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 293-316. doi: 10.3934/dcdss.2013.6.293

[7]

Sergei A. Avdonin, Boris P. Belinskiy. On controllability of a linear elastic beam with memory under longitudinal load. Evolution Equations & Control Theory, 2014, 3 (2) : 231-245. doi: 10.3934/eect.2014.3.231

[8]

Stanisław Migórski, Anna Ochal, Mircea Sofonea. Analysis of a frictional contact problem for viscoelastic materials with long memory. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 687-705. doi: 10.3934/dcdsb.2011.15.687

[9]

Romain Aimino, Huyi Hu, Matthew Nicol, Andrei Török, Sandro Vaienti. Polynomial loss of memory for maps of the interval with a neutral fixed point. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 793-806. doi: 10.3934/dcds.2015.35.793

[10]

Valeria Danese, Pelin G. Geredeli, Vittorino Pata. Exponential attractors for abstract equations with memory and applications to viscoelasticity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2881-2904. doi: 10.3934/dcds.2015.35.2881

[11]

Shujuan Lü, Zeting Liu, Zhaosheng Feng. Hermite spectral method for Long-Short wave equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 941-964. doi: 10.3934/dcdsb.2018255

[12]

Francesco Maddalena, Danilo Percivale, Franco Tomarelli. Adhesive flexible material structures. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 553-574. doi: 10.3934/dcdsb.2012.17.553

[13]

Vittorino Pata. Exponential stability in linear viscoelasticity with almost flat memory kernels. Communications on Pure & Applied Analysis, 2010, 9 (3) : 721-730. doi: 10.3934/cpaa.2010.9.721

[14]

Toyohiko Aiki. On the existence of a weak solution to a free boundary problem for a model of a shape memory alloy spring. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 1-13. doi: 10.3934/dcdss.2012.5.1

[15]

G. Idone, A. Maugeri. Variational inequalities and a transport planning for an elastic and continuum model. Journal of Industrial & Management Optimization, 2005, 1 (1) : 81-86. doi: 10.3934/jimo.2005.1.81

[16]

Jáuber Cavalcante Oliveira, Jardel Morais Pereira, Gustavo Perla Menzala. Long time dynamics of a multidimensional nonlinear lattice with memory. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2715-2732. doi: 10.3934/dcdsb.2015.20.2715

[17]

C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519

[18]

Mark S. Gockenbach, Akhtar A. Khan. Identification of Lamé parameters in linear elasticity: a fixed point approach. Journal of Industrial & Management Optimization, 2005, 1 (4) : 487-497. doi: 10.3934/jimo.2005.1.487

[19]

Stanislaw Migórski, Anna Ochal, Mircea Sofonea. Analysis of a dynamic Elastic-Viscoplastic contact problem with friction. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 887-902. doi: 10.3934/dcdsb.2008.10.887

[20]

Mircea Sofonea, Cezar Avramescu, Andaluzia Matei. A fixed point result with applications in the study of viscoplastic frictionless contact problems. Communications on Pure & Applied Analysis, 2008, 7 (3) : 645-658. doi: 10.3934/cpaa.2008.7.645

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]