-
Previous Article
Planar quasilinear elliptic equations with right-hand side in $L(\log L)^{\delta}$
- DCDS Home
- This Issue
-
Next Article
Finite-time Lyapunov stability analysis of evolution variational inequalities
On some frictional contact problems with velocity condition for elastic and visco-elastic materials
1. | University of La Réunion, PIMENT EA4518, 97715 Saint-Denis Messag cedex 9 La Réunion, France, France, France |
References:
[1] |
L.-E. Andersson, A global existence result for a quasistatic contact problem with friction, Advances in Mathematical Sciences ans Applications, 5 (1995), 249-286. |
[2] |
B. Awbi, El. H. Essoufi and M. Sofonea, A viscoelastic contact problem with normal damped response and friction, Annales Polonici Mathematici, 75 (2000), 233-246. |
[3] |
V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces," Translated from the Romanian, Editura Academiei Republicii Socialiste România, Bucharest, Noordhoff International Publishing, Leiden, 1976. |
[4] |
N. Bourbaki, "Éléments de Mathématiques," Première Partie, Livre IV, Fonctions d'une variable réelle, Hermann, 1961. |
[5] |
H. Brézis, Équations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble), 18 (1968), 115-175.
doi: 10.5802/aif.280. |
[6] |
H. Brézis, Problèmes unilatéraux, J. Math. Pures et Appli, 51 (1972), 1-168. |
[7] |
F. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, in "Nonlinear Functional Analysis" (Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Ill., 1968), 1-308, Amer. Math. Soc., Providence, RI, 1976. |
[8] |
O. Chau, R. Oujja and M. Rochdi, A mathematical analysis of a dynamical frictional contact model in thermoviscoelasticity, Discrete and Continuous Dynamical Systems, Series S, Volume 1 (2008), 61-70. |
[9] |
O. Chau, D. Motreanu and M. Sofonea, Quasistatic frictional problems for elastic and viscoelastic materials, Applications of Mathematics, 47 (2002), 341-360.
doi: 10.1023/A:1021753722771. |
[10] |
O. Chau and M. Rochdi, On a dynamic bilateral contact problem with friction for viscoelastic materials, Int. J. of Appli. Math. and Mech, 2 (2006), 41-52. |
[11] |
P. G. Ciarlet, "Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity," Studies in Mathematics and its Applications, 20, North-Holland Publishing Co., Amsterdam, 1988. |
[12] |
M. Cocu, E. Pratt and M. Raous, Formulation and approximation of quasistatic frictional contact, Int. J. Engn. Sci, 34 (1996), 783-798.
doi: 10.1016/0020-7225(95)00121-2. |
[13] |
G. Duvaut and J.-L. Lions, "Inequalities in Mechanics and Physics," Grundlehren der Mathematischen Wissenschaften, 219, Springer-Verlag, Berlin-New York, 1976. |
[14] |
C. Eck and J. Jarušek, Dynamic contact problems with small Coulomb friction for viscoelastic bodies. Existence of solutions, Mathematical models and Methods in Applied Sciences, 9 (1999), 11-34.
doi: 10.1142/S0218202599000038. |
[15] |
H. Fraysse and J. M. Arnaudiès, "Cours de Mathématiques," Dunod, 1999. |
[16] |
D. Goeleven, D. Motreanu, Y. Dumont and M. Rochdi, "Variational and Hemivariational Inequalities: Theory, Methods and Applications, Volume I: Unilateral Analysis and Unilateral Mechanics," Nonconvex Optimization and its Applications, 69, Kluwer Academic Publishers, Boston, MA, 2003. |
[17] |
I. Hlaváček, J. Haslinger, J. Necăs and J. Lovíšek, "Solution of Variational Inequalities in Mechanics," Applied Mathematical Sciences, 66, Springer-Verlag, New York, 1988. |
[18] |
W. Han and B. D. Reddy, "Plasticity. Mathematical Theory and Numerical Analysis," Interdisciplinary Applied Mathematics, 9, Springer-Verlag, New York, 1999. |
[19] |
J. Jarušek, Dynamic contact problems with given friction for viscoelastic bodies, Czechoslovak Mathematical Journal, 46 (1996), 475-487. |
[20] |
N. Kikuchi and J. T. Oden, "Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods," SIAM Studies in Applied Mathematics, 8, SIAM, Philadelphia, PA, 1988. |
[21] |
J. L. Lions and G. Stampacchia, Variational inequalities, Commun. Pure Appl. Math., 20 (1967), 493-519.
doi: 10.1002/cpa.3160200302. |
[22] |
J. A. C. Martins and J. T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws, Nonlin. Anal., 11 (1987), 407-428.
doi: 10.1016/0362-546X(87)90055-1. |
[23] |
J. Nečas and I. Hlavaček, "Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction," Elsevier, Amsterdam, 1981. |
[24] |
P. D. Panagiotopoulos, "Inequality Problems in Meechanical and Applications. Convex and Nonconvex Energy Functions," Birkhäuser Boston, Inc., Boston, MA, 1985. |
[25] |
P. D. Panagiotopoulos, "Hemivariational Inequalities, Applications in Mechanics and Engineering," Springer-Verlag, Berlin, 1993. |
[26] |
M. Raous, M. Jean and J. J. Moreau, eds., "Contact Mechanics," Plenum Press, New York, 1995. |
[27] |
M. Rochdi, M. Shillor and M. Sofonea, Quasistatic viscoelastic contact with normal compliance and friction, Journal of Elasticity, 51 (1998), 105-126.
doi: 10.1023/A:1007413119583. |
[28] |
E. Zeidler, "Nonlinear Functional Analysis and its Applications," Springer-Verlag, 1997. |
show all references
References:
[1] |
L.-E. Andersson, A global existence result for a quasistatic contact problem with friction, Advances in Mathematical Sciences ans Applications, 5 (1995), 249-286. |
[2] |
B. Awbi, El. H. Essoufi and M. Sofonea, A viscoelastic contact problem with normal damped response and friction, Annales Polonici Mathematici, 75 (2000), 233-246. |
[3] |
V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces," Translated from the Romanian, Editura Academiei Republicii Socialiste România, Bucharest, Noordhoff International Publishing, Leiden, 1976. |
[4] |
N. Bourbaki, "Éléments de Mathématiques," Première Partie, Livre IV, Fonctions d'une variable réelle, Hermann, 1961. |
[5] |
H. Brézis, Équations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble), 18 (1968), 115-175.
doi: 10.5802/aif.280. |
[6] |
H. Brézis, Problèmes unilatéraux, J. Math. Pures et Appli, 51 (1972), 1-168. |
[7] |
F. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, in "Nonlinear Functional Analysis" (Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Ill., 1968), 1-308, Amer. Math. Soc., Providence, RI, 1976. |
[8] |
O. Chau, R. Oujja and M. Rochdi, A mathematical analysis of a dynamical frictional contact model in thermoviscoelasticity, Discrete and Continuous Dynamical Systems, Series S, Volume 1 (2008), 61-70. |
[9] |
O. Chau, D. Motreanu and M. Sofonea, Quasistatic frictional problems for elastic and viscoelastic materials, Applications of Mathematics, 47 (2002), 341-360.
doi: 10.1023/A:1021753722771. |
[10] |
O. Chau and M. Rochdi, On a dynamic bilateral contact problem with friction for viscoelastic materials, Int. J. of Appli. Math. and Mech, 2 (2006), 41-52. |
[11] |
P. G. Ciarlet, "Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity," Studies in Mathematics and its Applications, 20, North-Holland Publishing Co., Amsterdam, 1988. |
[12] |
M. Cocu, E. Pratt and M. Raous, Formulation and approximation of quasistatic frictional contact, Int. J. Engn. Sci, 34 (1996), 783-798.
doi: 10.1016/0020-7225(95)00121-2. |
[13] |
G. Duvaut and J.-L. Lions, "Inequalities in Mechanics and Physics," Grundlehren der Mathematischen Wissenschaften, 219, Springer-Verlag, Berlin-New York, 1976. |
[14] |
C. Eck and J. Jarušek, Dynamic contact problems with small Coulomb friction for viscoelastic bodies. Existence of solutions, Mathematical models and Methods in Applied Sciences, 9 (1999), 11-34.
doi: 10.1142/S0218202599000038. |
[15] |
H. Fraysse and J. M. Arnaudiès, "Cours de Mathématiques," Dunod, 1999. |
[16] |
D. Goeleven, D. Motreanu, Y. Dumont and M. Rochdi, "Variational and Hemivariational Inequalities: Theory, Methods and Applications, Volume I: Unilateral Analysis and Unilateral Mechanics," Nonconvex Optimization and its Applications, 69, Kluwer Academic Publishers, Boston, MA, 2003. |
[17] |
I. Hlaváček, J. Haslinger, J. Necăs and J. Lovíšek, "Solution of Variational Inequalities in Mechanics," Applied Mathematical Sciences, 66, Springer-Verlag, New York, 1988. |
[18] |
W. Han and B. D. Reddy, "Plasticity. Mathematical Theory and Numerical Analysis," Interdisciplinary Applied Mathematics, 9, Springer-Verlag, New York, 1999. |
[19] |
J. Jarušek, Dynamic contact problems with given friction for viscoelastic bodies, Czechoslovak Mathematical Journal, 46 (1996), 475-487. |
[20] |
N. Kikuchi and J. T. Oden, "Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods," SIAM Studies in Applied Mathematics, 8, SIAM, Philadelphia, PA, 1988. |
[21] |
J. L. Lions and G. Stampacchia, Variational inequalities, Commun. Pure Appl. Math., 20 (1967), 493-519.
doi: 10.1002/cpa.3160200302. |
[22] |
J. A. C. Martins and J. T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws, Nonlin. Anal., 11 (1987), 407-428.
doi: 10.1016/0362-546X(87)90055-1. |
[23] |
J. Nečas and I. Hlavaček, "Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction," Elsevier, Amsterdam, 1981. |
[24] |
P. D. Panagiotopoulos, "Inequality Problems in Meechanical and Applications. Convex and Nonconvex Energy Functions," Birkhäuser Boston, Inc., Boston, MA, 1985. |
[25] |
P. D. Panagiotopoulos, "Hemivariational Inequalities, Applications in Mechanics and Engineering," Springer-Verlag, Berlin, 1993. |
[26] |
M. Raous, M. Jean and J. J. Moreau, eds., "Contact Mechanics," Plenum Press, New York, 1995. |
[27] |
M. Rochdi, M. Shillor and M. Sofonea, Quasistatic viscoelastic contact with normal compliance and friction, Journal of Elasticity, 51 (1998), 105-126.
doi: 10.1023/A:1007413119583. |
[28] |
E. Zeidler, "Nonlinear Functional Analysis and its Applications," Springer-Verlag, 1997. |
[1] |
Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10 |
[2] |
Xiaoqiang Dai, Wenke Li. Non-global solution for visco-elastic dynamical system with nonlinear source term in control problem. Electronic Research Archive, 2021, 29 (6) : 4087-4098. doi: 10.3934/era.2021073 |
[3] |
Linglong Du. Long time behavior for the visco-elastic damped wave equation in $\mathbb{R}^n_+$ and the boundary effect. Networks and Heterogeneous Media, 2018, 13 (4) : 549-565. doi: 10.3934/nhm.2018025 |
[4] |
Mustapha El Jarroudi, Youness Filali, Aadil Lahrouz, Mustapha Er-Riani, Adel Settati. Asymptotic analysis of an elastic material reinforced with thin fractal strips. Networks and Heterogeneous Media, 2022, 17 (1) : 47-72. doi: 10.3934/nhm.2021023 |
[5] |
Maria-Magdalena Boureanu, Andaluzia Matei, Mircea Sofonea. Analysis of a contact problem for electro-elastic-visco-plastic materials. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1185-1203. doi: 10.3934/cpaa.2012.11.1185 |
[6] |
Moncef Aouadi, Imed Mahfoudhi, Taoufik Moulahi. Approximate controllability of nonsimple elastic plate with memory. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1015-1043. doi: 10.3934/dcdss.2021147 |
[7] |
Tuan Anh Dao, Hironori Michihisa. Study of semi-linear $ \sigma $-evolution equations with frictional and visco-elastic damping. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1581-1608. doi: 10.3934/cpaa.2020079 |
[8] |
Grigory Panasenko, Ruxandra Stavre. Asymptotic analysis of a non-periodic flow in a thin channel with visco-elastic wall. Networks and Heterogeneous Media, 2008, 3 (3) : 651-673. doi: 10.3934/nhm.2008.3.651 |
[9] |
Marita Thomas, Sven Tornquist. Discrete approximation of dynamic phase-field fracture in visco-elastic materials. Discrete and Continuous Dynamical Systems - S, 2021, 14 (11) : 3865-3924. doi: 10.3934/dcdss.2021067 |
[10] |
Abd-semii Oluwatosin-Enitan Owolabi, Timilehin Opeyemi Alakoya, Adeolu Taiwo, Oluwatosin Temitope Mewomo. A new inertial-projection algorithm for approximating common solution of variational inequality and fixed point problems of multivalued mappings. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 255-278. doi: 10.3934/naco.2021004 |
[11] |
Habib ur Rehman, Poom Kumam, Yusuf I. Suleiman, Widaya Kumam. An adaptive block iterative process for a class of multiple sets split variational inequality problems and common fixed point problems in Hilbert spaces. Numerical Algebra, Control and Optimization, 2022 doi: 10.3934/naco.2022007 |
[12] |
Daniele Davino, Ciro Visone. Rate-independent memory in magneto-elastic materials. Discrete and Continuous Dynamical Systems - S, 2015, 8 (4) : 649-691. doi: 10.3934/dcdss.2015.8.649 |
[13] |
Alessia Berti, Claudio Giorgi, Elena Vuk. Free energies and pseudo-elastic transitions for shape memory alloys. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 293-316. doi: 10.3934/dcdss.2013.6.293 |
[14] |
Sergei A. Avdonin, Boris P. Belinskiy. On controllability of a linear elastic beam with memory under longitudinal load. Evolution Equations and Control Theory, 2014, 3 (2) : 231-245. doi: 10.3934/eect.2014.3.231 |
[15] |
Stanisław Migórski, Anna Ochal, Mircea Sofonea. Analysis of a frictional contact problem for viscoelastic materials with long memory. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 687-705. doi: 10.3934/dcdsb.2011.15.687 |
[16] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205 |
[17] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1521-1543. doi: 10.3934/cpaa.2021031 |
[18] |
Romain Aimino, Huyi Hu, Matthew Nicol, Andrei Török, Sandro Vaienti. Polynomial loss of memory for maps of the interval with a neutral fixed point. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 793-806. doi: 10.3934/dcds.2015.35.793 |
[19] |
Zijia Peng, Cuiming Ma, Zhonghui Liu. Existence for a quasistatic variational-hemivariational inequality. Evolution Equations and Control Theory, 2020, 9 (4) : 1153-1165. doi: 10.3934/eect.2020058 |
[20] |
Jiaohui Xu, Tomás Caraballo, José Valero. Asymptotic behavior of nonlocal partial differential equations with long time memory. Discrete and Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021140 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]