December  2011, 31(4): 1069-1096. doi: 10.3934/dcds.2011.31.1069

Refined necessary conditions in multiobjective optimization with applications to microeconomic modeling

1. 

Department of Mathematics & Computer Science, Northern Michigan University, Marquette, MI 49855, United States

2. 

Department of Mathematics, Wayne State University, Detroit, MI 48202, United States

Received  November 2009 Revised  June 2010 Published  September 2011

This paper concerns new developments on first-order necessary conditions in set-valued optimization with applications of the results obtained to deriving refined versions of the so-called second fundamental theorem of welfare economics. It is shown that equilibrium marginal prices at local Pareto-type optimal allocations of nonconvex economies are in fact adjoint elements/ multipliers in necessary conditions for fully localized minimizers of appropriate constrained set-valued optimization problems. The latter notions are new in multiobjective optimization and reduce to conventional notions of minima for scalar problems. Our approach is based on advanced tools of variational analysis and generalized differentiation.
Citation: Truong Q. Bao, Boris S. Mordukhovich. Refined necessary conditions in multiobjective optimization with applications to microeconomic modeling. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1069-1096. doi: 10.3934/dcds.2011.31.1069
References:
[1]

T. Q. Bao and B. S. Mordukhovich, Necessary conditions for super minimizers in constrained multiobjective optimization,, J. Global Optim., 43 (2009), 533.  doi: 10.1007/s10898-008-9336-4.  Google Scholar

[2]

T. Q. Bao and B. S. Mordukhovich, Relative Pareto minimizers in multiobjective optimization: Existence and optimality conditions,, Math. Program., 122 (2010), 301.  doi: 10.1007/s10107-008-0249-2.  Google Scholar

[3]

S. Bellaassali and A. Jourani, Lagrange multipliers for multiobjective programs with a general preference,, Set-Valued Anal., 16 (2008), 229.  doi: 10.1007/s11228-008-0078-8.  Google Scholar

[4]

J.-M. Bonnisseau and B. Cornet, Valuation equilibrium and Pareto optimum in nonconvex economies. General equilibrium theory and increasing returns,, J. Math. Econ., 17 (1988), 293.   Google Scholar

[5]

J. M. Borwein and Q. J. Zhu, Techniques of Variational Analysis,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 20 (2005).   Google Scholar

[6]

B. Cornet, The second welfare theorem in nonconvex economies,, CORE discussion paper # 8630, (8630).   Google Scholar

[7]

S. Dempe and V. Kalashnikov, eds., "Optimization with Multivalued Mappings: Theory, Applications and Algorithms,", Springer Optim. Appl., 2 (2006).   Google Scholar

[8]

S. Dempe and J. Dutta, Is bilevel programming a special case of a mathematical program with complementarity constraints?,, Math. Program., ().  doi: 10.1007/s10107-010-0342-1.  Google Scholar

[9]

M. Florenzano, P. Gourdel and A. Jofré, Supporting weakly Pareto optimal allocations in infinite dimensional nonconvex economies,, J. Economic Theory, 29 (2006), 549.  doi: 10.1007/s00199-005-0033-y.  Google Scholar

[10]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 17 (2003).   Google Scholar

[11]

A. D. Ioffe, Variational analysis and mathematical economics, I: Subdifferential calculus and the second theorem of welfare economics,, Adv. Math. Econ., 12 (2009), 71.  doi: 10.1007/978-4-431-92935-2_3.  Google Scholar

[12]

J. Jahn, "Vector Optimization. Theory, Applications and Extensions,", Series in Operations Research and Decision Theory, (2004).   Google Scholar

[13]

A. Jofré, A second-welfare theorem in nonconvex economies,, in, 27 (1999).   Google Scholar

[14]

A. Jofré and J. R. Cayupi, A nonconvex separation property and some applications,, Math. Program., 108 (2006), 37.  doi: 10.1007/s10107-006-0703-y.  Google Scholar

[15]

M. A. Khan, Ioffe's normal cone and the foundation of welfare economics: The infinite-dimensional theory,, J. Math. Anal. Appl., 161 (1991), 284.  doi: 10.1016/0022-247X(91)90376-B.  Google Scholar

[16]

M. A. Khan, The Mordukhovich normal cone and the foundations of welfare economics,, J. Public Economic Theory, 1 (1999), 309.  doi: 10.1111/1097-3923.00014.  Google Scholar

[17]

D. T. L/duc, "Theory of Vector Optimization,", Lecture Notes in Economics and Mathematical Systems, 319 (1989).   Google Scholar

[18]

A. Mas-Colell, "The Theory of General Economic Equilibrium. A Differentiable Approach,", Econometric Society Monographs, 9 (1989).   Google Scholar

[19]

B. S. Mordukhovich, An abstract extremal principle with applications to welfare economics,, J. Math. Anal. Appl., 251 (2000), 187.  doi: 10.1006/jmaa.2000.7041.  Google Scholar

[20]

B. S. Mordukhovich, Nonlinear prices in nonconvex economics with classical Pareto and strong Pareto allocations,, Positivity, 9 (2005), 541.  doi: 10.1007/s11117-004-8076-z.  Google Scholar

[21]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, I: Basic Theory,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 330 (2006).   Google Scholar

[22]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, II: Applications,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 331 (2006).   Google Scholar

[23]

B. S. Mordukhovich, J. S. Treiman and Q. J. Zhu, An extended extremal principle with applications to multiobjective optimization,, SIAM J. Optim., 14 (2003), 359.  doi: 10.1137/S1052623402414701.  Google Scholar

[24]

J. Quirk and R. Saposnik, "Introduction to General Equilibrium Theory and Welfare Economics,", Economics Handbook Series, (1968).   Google Scholar

[25]

R. T. Rockafellar, Directional Lipschitzian functions and subdifferential calculus,, Proc. London Math. Soc. (3), 39 (1979), 331.  doi: 10.1112/plms/s3-39.2.331.  Google Scholar

[26]

P. A. Samuelson, "Foundations of Economic Analysis,", Harvard University Press, (1947).   Google Scholar

[27]

Q. J. Zhu, Nonconvex separation theorem for multifunctions, subdifferential calculus and applications,, Set-Valued Anal., 12 (2004), 275.  doi: 10.1023/B:SVAN.0000023401.51035.28.  Google Scholar

show all references

References:
[1]

T. Q. Bao and B. S. Mordukhovich, Necessary conditions for super minimizers in constrained multiobjective optimization,, J. Global Optim., 43 (2009), 533.  doi: 10.1007/s10898-008-9336-4.  Google Scholar

[2]

T. Q. Bao and B. S. Mordukhovich, Relative Pareto minimizers in multiobjective optimization: Existence and optimality conditions,, Math. Program., 122 (2010), 301.  doi: 10.1007/s10107-008-0249-2.  Google Scholar

[3]

S. Bellaassali and A. Jourani, Lagrange multipliers for multiobjective programs with a general preference,, Set-Valued Anal., 16 (2008), 229.  doi: 10.1007/s11228-008-0078-8.  Google Scholar

[4]

J.-M. Bonnisseau and B. Cornet, Valuation equilibrium and Pareto optimum in nonconvex economies. General equilibrium theory and increasing returns,, J. Math. Econ., 17 (1988), 293.   Google Scholar

[5]

J. M. Borwein and Q. J. Zhu, Techniques of Variational Analysis,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 20 (2005).   Google Scholar

[6]

B. Cornet, The second welfare theorem in nonconvex economies,, CORE discussion paper # 8630, (8630).   Google Scholar

[7]

S. Dempe and V. Kalashnikov, eds., "Optimization with Multivalued Mappings: Theory, Applications and Algorithms,", Springer Optim. Appl., 2 (2006).   Google Scholar

[8]

S. Dempe and J. Dutta, Is bilevel programming a special case of a mathematical program with complementarity constraints?,, Math. Program., ().  doi: 10.1007/s10107-010-0342-1.  Google Scholar

[9]

M. Florenzano, P. Gourdel and A. Jofré, Supporting weakly Pareto optimal allocations in infinite dimensional nonconvex economies,, J. Economic Theory, 29 (2006), 549.  doi: 10.1007/s00199-005-0033-y.  Google Scholar

[10]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 17 (2003).   Google Scholar

[11]

A. D. Ioffe, Variational analysis and mathematical economics, I: Subdifferential calculus and the second theorem of welfare economics,, Adv. Math. Econ., 12 (2009), 71.  doi: 10.1007/978-4-431-92935-2_3.  Google Scholar

[12]

J. Jahn, "Vector Optimization. Theory, Applications and Extensions,", Series in Operations Research and Decision Theory, (2004).   Google Scholar

[13]

A. Jofré, A second-welfare theorem in nonconvex economies,, in, 27 (1999).   Google Scholar

[14]

A. Jofré and J. R. Cayupi, A nonconvex separation property and some applications,, Math. Program., 108 (2006), 37.  doi: 10.1007/s10107-006-0703-y.  Google Scholar

[15]

M. A. Khan, Ioffe's normal cone and the foundation of welfare economics: The infinite-dimensional theory,, J. Math. Anal. Appl., 161 (1991), 284.  doi: 10.1016/0022-247X(91)90376-B.  Google Scholar

[16]

M. A. Khan, The Mordukhovich normal cone and the foundations of welfare economics,, J. Public Economic Theory, 1 (1999), 309.  doi: 10.1111/1097-3923.00014.  Google Scholar

[17]

D. T. L/duc, "Theory of Vector Optimization,", Lecture Notes in Economics and Mathematical Systems, 319 (1989).   Google Scholar

[18]

A. Mas-Colell, "The Theory of General Economic Equilibrium. A Differentiable Approach,", Econometric Society Monographs, 9 (1989).   Google Scholar

[19]

B. S. Mordukhovich, An abstract extremal principle with applications to welfare economics,, J. Math. Anal. Appl., 251 (2000), 187.  doi: 10.1006/jmaa.2000.7041.  Google Scholar

[20]

B. S. Mordukhovich, Nonlinear prices in nonconvex economics with classical Pareto and strong Pareto allocations,, Positivity, 9 (2005), 541.  doi: 10.1007/s11117-004-8076-z.  Google Scholar

[21]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, I: Basic Theory,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 330 (2006).   Google Scholar

[22]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, II: Applications,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 331 (2006).   Google Scholar

[23]

B. S. Mordukhovich, J. S. Treiman and Q. J. Zhu, An extended extremal principle with applications to multiobjective optimization,, SIAM J. Optim., 14 (2003), 359.  doi: 10.1137/S1052623402414701.  Google Scholar

[24]

J. Quirk and R. Saposnik, "Introduction to General Equilibrium Theory and Welfare Economics,", Economics Handbook Series, (1968).   Google Scholar

[25]

R. T. Rockafellar, Directional Lipschitzian functions and subdifferential calculus,, Proc. London Math. Soc. (3), 39 (1979), 331.  doi: 10.1112/plms/s3-39.2.331.  Google Scholar

[26]

P. A. Samuelson, "Foundations of Economic Analysis,", Harvard University Press, (1947).   Google Scholar

[27]

Q. J. Zhu, Nonconvex separation theorem for multifunctions, subdifferential calculus and applications,, Set-Valued Anal., 12 (2004), 275.  doi: 10.1023/B:SVAN.0000023401.51035.28.  Google Scholar

[1]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[2]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[3]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[4]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[5]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[6]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[7]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[8]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[9]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[10]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[11]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[12]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[13]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[14]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[15]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[16]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[17]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[18]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[19]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[20]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]