• Previous Article
    Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent
  • DCDS Home
  • This Issue
  • Next Article
    Classification of local asymptotics for solutions to heat equations with inverse-square potentials
March  2011, 31(1): 109-118. doi: 10.3934/dcds.2011.31.109

Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential

1. 

Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221-0025, United States

Received  January 2010 Revised  March 2011 Published  June 2011

We prove Strichartz estimates for the absolutely continuous evolution of a Schrödinger operator $H = (i\nabla + A)^2 + V$ in $R^n$, $n \ge 3$. Both the magnetic and electric potentials are time-independent and satisfy pointwise polynomial decay bounds. The vector potential $A(x)$ is assumed to be continuous but need not possess any Sobolev regularity. This work is a refinement of previous methods, which required extra conditions on ${\rm div}\,A$ or $|\nabla|^{\frac12}A$ in order to place the first order part of the perturbation within a suitable class of pseudo-differential operators.
Citation: Michael Goldberg. Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 109-118. doi: 10.3934/dcds.2011.31.109
References:
[1]

S. Agmon, Spectral properties of Schrödinger operators and scattering theory,, Ann. Sc. Norm. Super. Pisa. Cl. Sci., 2 (1975), 151.   Google Scholar

[2]

S. Agmon and L. Hörmander, Asymptotic properties of solutions of differential equations with simple characteristics,, J. Anal. Math., 30 (1976), 1.  doi: 10.1007/BF02786703.  Google Scholar

[3]

J.-M. Bouclet and N. Tzvetkov, On global Strichartz estimates for non-trapping metrics,, J. Funct. Anal., 254 (2008), 1661.  doi: 10.1016/j.jfa.2007.11.018.  Google Scholar

[4]

F. Cardoso, C. Cuevas and G. Vodev, Dispersive estimates for the Schrödinger equation in dimension four and five,, Asymptot. Anal., 62 (2009), 125.   Google Scholar

[5]

M. Christ and A. Kiselev, Maximal functions associated to filtrations,, J. Funct. Anal., 179 (2001), 409.  doi: 10.1006/jfan.2000.3687.  Google Scholar

[6]

P. Constantin and J.-C. Saut, Local smoothing properties of dispersive equations,, J. Amer. Math. Soc., 1 (1988), 413.  doi: 10.1090/S0894-0347-1988-0928265-0.  Google Scholar

[7]

M. B. Erdoǧan, M. Goldberg and W. Schlag, Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions,, Forum Math., 21 (2009), 687.  doi: 10.1515/FORUM.2009.035.  Google Scholar

[8]

M. Goldberg and M. Visan, A Counterexample to dispersive estimates for Schrödinger operators in higher dimensions,, Comm. Math. Phys., 266 (2006), 211.  doi: 10.1007/s00220-006-0013-5.  Google Scholar

[9]

L. Hörmander, "The Analysis of Linear Partial Differential Operators. II,'', Grundlehren der Mathematischen Wissenschaften, (1983).   Google Scholar

[10]

A. Ionescu and W. Schlag, Agmon-Kato-Kuroda theorems for a large class of perturbations,, Duke Math. J., 131 (2006), 397.  doi: 10.1215/S0012-7094-06-13131-9.  Google Scholar

[11]

A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions,, Duke Math. J., 46 (1979), 583.  doi: 10.1215/S0012-7094-79-04631-3.  Google Scholar

[12]

T. Kato, Wave operators and similarity for some non-selfadjoint operators,, Math. Ann., 162 (): 258.   Google Scholar

[13]

H. Koch and D. Tataru, Carleman estimates and absence of embedded eigenvalues,, Comm. Math. Phys., 267 (2006), 419.  doi: 10.1007/s00220-006-0060-y.  Google Scholar

[14]

J. Marzuola, J. Metcalfe and D. Tataru, Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations,, J. Funct. Anal., 255 (2008), 1497.  doi: 10.1016/j.jfa.2008.05.022.  Google Scholar

[15]

D. Robert, Asymptotique de la phase de diffusion à haute énergie pour des perturbations du second ordre du Laplacien,, Ann. Sci. École Norm. Sup., 25 (1992), 107.   Google Scholar

[16]

I. Rodnianski and W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials,, Invent. Math., 155 (2004), 451.  doi: 10.1007/s00222-003-0325-4.  Google Scholar

[17]

B. Simon, Best constants in some operator smoothness estimates,, J. Funct. Anal., 107 (1992), 66.  doi: 10.1016/0022-1236(92)90100-W.  Google Scholar

[18]

H. Smith and C. Sogge, Global Strichartz estimates for nontrapping perturbations of the Laplacian,, Comm. PDE, 25 (2000), 2171.  doi: 10.1080/03605300008821581.  Google Scholar

[19]

K. Yajima, Existence of solutions for Schrödinger evolution equations,, Comm. Math. Phys., 110 (1987), 415.  doi: 10.1007/BF01212420.  Google Scholar

show all references

References:
[1]

S. Agmon, Spectral properties of Schrödinger operators and scattering theory,, Ann. Sc. Norm. Super. Pisa. Cl. Sci., 2 (1975), 151.   Google Scholar

[2]

S. Agmon and L. Hörmander, Asymptotic properties of solutions of differential equations with simple characteristics,, J. Anal. Math., 30 (1976), 1.  doi: 10.1007/BF02786703.  Google Scholar

[3]

J.-M. Bouclet and N. Tzvetkov, On global Strichartz estimates for non-trapping metrics,, J. Funct. Anal., 254 (2008), 1661.  doi: 10.1016/j.jfa.2007.11.018.  Google Scholar

[4]

F. Cardoso, C. Cuevas and G. Vodev, Dispersive estimates for the Schrödinger equation in dimension four and five,, Asymptot. Anal., 62 (2009), 125.   Google Scholar

[5]

M. Christ and A. Kiselev, Maximal functions associated to filtrations,, J. Funct. Anal., 179 (2001), 409.  doi: 10.1006/jfan.2000.3687.  Google Scholar

[6]

P. Constantin and J.-C. Saut, Local smoothing properties of dispersive equations,, J. Amer. Math. Soc., 1 (1988), 413.  doi: 10.1090/S0894-0347-1988-0928265-0.  Google Scholar

[7]

M. B. Erdoǧan, M. Goldberg and W. Schlag, Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions,, Forum Math., 21 (2009), 687.  doi: 10.1515/FORUM.2009.035.  Google Scholar

[8]

M. Goldberg and M. Visan, A Counterexample to dispersive estimates for Schrödinger operators in higher dimensions,, Comm. Math. Phys., 266 (2006), 211.  doi: 10.1007/s00220-006-0013-5.  Google Scholar

[9]

L. Hörmander, "The Analysis of Linear Partial Differential Operators. II,'', Grundlehren der Mathematischen Wissenschaften, (1983).   Google Scholar

[10]

A. Ionescu and W. Schlag, Agmon-Kato-Kuroda theorems for a large class of perturbations,, Duke Math. J., 131 (2006), 397.  doi: 10.1215/S0012-7094-06-13131-9.  Google Scholar

[11]

A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions,, Duke Math. J., 46 (1979), 583.  doi: 10.1215/S0012-7094-79-04631-3.  Google Scholar

[12]

T. Kato, Wave operators and similarity for some non-selfadjoint operators,, Math. Ann., 162 (): 258.   Google Scholar

[13]

H. Koch and D. Tataru, Carleman estimates and absence of embedded eigenvalues,, Comm. Math. Phys., 267 (2006), 419.  doi: 10.1007/s00220-006-0060-y.  Google Scholar

[14]

J. Marzuola, J. Metcalfe and D. Tataru, Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations,, J. Funct. Anal., 255 (2008), 1497.  doi: 10.1016/j.jfa.2008.05.022.  Google Scholar

[15]

D. Robert, Asymptotique de la phase de diffusion à haute énergie pour des perturbations du second ordre du Laplacien,, Ann. Sci. École Norm. Sup., 25 (1992), 107.   Google Scholar

[16]

I. Rodnianski and W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials,, Invent. Math., 155 (2004), 451.  doi: 10.1007/s00222-003-0325-4.  Google Scholar

[17]

B. Simon, Best constants in some operator smoothness estimates,, J. Funct. Anal., 107 (1992), 66.  doi: 10.1016/0022-1236(92)90100-W.  Google Scholar

[18]

H. Smith and C. Sogge, Global Strichartz estimates for nontrapping perturbations of the Laplacian,, Comm. PDE, 25 (2000), 2171.  doi: 10.1080/03605300008821581.  Google Scholar

[19]

K. Yajima, Existence of solutions for Schrödinger evolution equations,, Comm. Math. Phys., 110 (1987), 415.  doi: 10.1007/BF01212420.  Google Scholar

[1]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[2]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[3]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[4]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[5]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[7]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[8]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[9]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[10]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[11]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[12]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[13]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[14]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[15]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[16]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[17]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[18]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[19]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[20]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]