December  2011, 31(4): 1115-1128. doi: 10.3934/dcds.2011.31.1115

Optimal shape for elliptic problems with random perturbations

1. 

Dipartimento di Matematica, Largo B. Pontecorvo, 5, 56127 Pisa, Italy

2. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Tarfia s/n, E-41012 Sevilla, Spain

Received  October 2009 Revised  March 2010 Published  September 2011

In this paper we analyze the relaxed form of a shape optimization problem with state equation $$ \begin{equation} \left\{\begin{array}{ll} -div\big(a(x)Du\big)=f\qquad\hbox{in }D\\ \hbox{boundary conditions on }\partial D. \end{array} \right. \end{equation} $$ The new fact is that the term $f$ is only known up to a random perturbation $\xi(x,\omega)$. The goal is to find an optimal coefficient $a(x)$, fulfilling the usual constraints $\alpha\le a\le\beta$ and $\displaystyle\int_D a(x)\,dx\le m$, which minimizes a cost function of the form $$\int_\Omega\int_Dj\big(x,\omega,u_a(x,\omega)\big)\,dx\,dP(\omega).$$ Some numerical examples are shown in the last section, which evidence the previous analytical results.
Citation: Giuseppe Buttazzo, Faustino Maestre. Optimal shape for elliptic problems with random perturbations. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1115-1128. doi: 10.3934/dcds.2011.31.1115
References:
[1]

G. Allaire, "Shape Optimization by the Homogenization Method," Applied Mathematical Sciences, 146, Springer-Verlag, New York, 2002.  Google Scholar

[2]

F. Alvarez and M. Carrasco, Minimization of the expected compliance as an alternative approach to multiload truss optimization, Struct. Multidiscip. Optim., 29 (2005), 470-476. doi: 10.1007/s00158-004-0488-7.  Google Scholar

[3]

M. P. Bendsøe and O. Sigmund, "Topology Optimization: Theory, Methods and Aplications," Springer-Verlag, Berlin, 2003.  Google Scholar

[4]

D. Bucur and G. Buttazzo, "Variational Methods in Shape Optimization Problems," Progress in Nonlinear Differential Equations and their Applications, 65, Birkhäuser Boston, Inc., Boston, MA, 2005.  Google Scholar

[5]

J. Casado-Díaz, J. Couce-Calvo, M. Luna-Laynez and J. D. Martín-Gómez, Optimal design problems for a non-linear cost in the gradient: numerical results, Applicable Analysis, 87 (2008), 1461-1487.  Google Scholar

[6]

A. Cherkaev, "Variational Methods for Structural Optimization," Applied Mathematical Sciences, 140, Springer-Verlag, New York, 2000.  Google Scholar

[7]

G. Dal Maso and L. Modica, Nonlinear stochastic homogenization and ergodic theory, J. Reine Angew. Math., 368 (1986), 28-42.  Google Scholar

[8]

A. Donoso and P. Pedregal, Optimal design of 2-$D$ conducting graded materials by minimizing quadratic funtionals in the field, Struc. Multidisc Optim., 30 (2005), 360-367. doi: 10.1007/s00158-005-0521-5.  Google Scholar

[9]

A. Henrot and M. Pierre, "Variation et Optimisation de Formes. Une Analyse Géométrique," Mathématiques et Applications, 48, Springer, Berlin, 2005.  Google Scholar

[10]

K. A. Lurie and A. V. Cherkaev, Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion, Proc. R. Soc. Edinb. A, 99 (1984), 71-87.  Google Scholar

[11]

F. Maestre, A. Münch and P. Pedregal, A spatio-temporal design problem for a damped wave equation, SIAM J. Appl. Math., 68 (2007), 109-132. doi: 10.1137/07067965X.  Google Scholar

[12]

G. W. Milton, "The Theory of Composites," Cambridge Monographs on Applied and Computational Mathematics, 6, Cambridge University Press, Cambridge, 2002.  Google Scholar

[13]

F. Murat, Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients, Ann. Mat. Pura Appl. (4), 112 (1977), 49-68.  Google Scholar

[14]

F. Murat and L. Tartar, Optimality conditions and homogenization, in "Nonlinear Variational Problems" (Isola d'Elba, 1983), Res. Notes Math., 127, Pitman, Boston, MA, (1985), 1-8.  Google Scholar

[15]

F. Murat and L. Tartar, $H$-convergence, in "Topics in the Mathematical Modelling of Composites Materials," Progress in Nonlinear Differential Equations, 31, Birkhäuser Boston, Boston, MA, (1997), 21-43.  Google Scholar

[16]

F. Murat and L. Tartar, Calculus of variations and homogenization, in "Topics in the Mathematical Modelling of Composites Materials," Progress in Nonlinear Differential Equations Appl., 31, Birkhäuser Boston, Boston, MA, (1997), 139-173.  Google Scholar

[17]

P. Pedregal, Vector variational problems and applications to optimal design, ESAIM Control Optim. Calc. Var., 11 (2005), 357-381. doi: 10.1051/cocv:2005010.  Google Scholar

[18]

P. Pedregal, "Parametrized Measures and Variational Principles," Progress Nonlinear Differential Equations and Their Applications, 30, Birkhäuser Verlag, Basel, 1997.  Google Scholar

[19]

J. Sokołowski and J.-P. Zolésio, "Introduction to Shape Optimization: Shape Sensitivity Analysis," Springer Series in Computational Mathematics, 16, Springer-Verlag, Berlin, 1992.  Google Scholar

[20]

L. Tartar, An introduction to the homogenization method in optimal design, in "Optimal Shape Design" (Tróia, 1998), Lecture Notes Math., 1740, Springer, Berlin, (2000), 47-156.  Google Scholar

show all references

References:
[1]

G. Allaire, "Shape Optimization by the Homogenization Method," Applied Mathematical Sciences, 146, Springer-Verlag, New York, 2002.  Google Scholar

[2]

F. Alvarez and M. Carrasco, Minimization of the expected compliance as an alternative approach to multiload truss optimization, Struct. Multidiscip. Optim., 29 (2005), 470-476. doi: 10.1007/s00158-004-0488-7.  Google Scholar

[3]

M. P. Bendsøe and O. Sigmund, "Topology Optimization: Theory, Methods and Aplications," Springer-Verlag, Berlin, 2003.  Google Scholar

[4]

D. Bucur and G. Buttazzo, "Variational Methods in Shape Optimization Problems," Progress in Nonlinear Differential Equations and their Applications, 65, Birkhäuser Boston, Inc., Boston, MA, 2005.  Google Scholar

[5]

J. Casado-Díaz, J. Couce-Calvo, M. Luna-Laynez and J. D. Martín-Gómez, Optimal design problems for a non-linear cost in the gradient: numerical results, Applicable Analysis, 87 (2008), 1461-1487.  Google Scholar

[6]

A. Cherkaev, "Variational Methods for Structural Optimization," Applied Mathematical Sciences, 140, Springer-Verlag, New York, 2000.  Google Scholar

[7]

G. Dal Maso and L. Modica, Nonlinear stochastic homogenization and ergodic theory, J. Reine Angew. Math., 368 (1986), 28-42.  Google Scholar

[8]

A. Donoso and P. Pedregal, Optimal design of 2-$D$ conducting graded materials by minimizing quadratic funtionals in the field, Struc. Multidisc Optim., 30 (2005), 360-367. doi: 10.1007/s00158-005-0521-5.  Google Scholar

[9]

A. Henrot and M. Pierre, "Variation et Optimisation de Formes. Une Analyse Géométrique," Mathématiques et Applications, 48, Springer, Berlin, 2005.  Google Scholar

[10]

K. A. Lurie and A. V. Cherkaev, Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion, Proc. R. Soc. Edinb. A, 99 (1984), 71-87.  Google Scholar

[11]

F. Maestre, A. Münch and P. Pedregal, A spatio-temporal design problem for a damped wave equation, SIAM J. Appl. Math., 68 (2007), 109-132. doi: 10.1137/07067965X.  Google Scholar

[12]

G. W. Milton, "The Theory of Composites," Cambridge Monographs on Applied and Computational Mathematics, 6, Cambridge University Press, Cambridge, 2002.  Google Scholar

[13]

F. Murat, Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients, Ann. Mat. Pura Appl. (4), 112 (1977), 49-68.  Google Scholar

[14]

F. Murat and L. Tartar, Optimality conditions and homogenization, in "Nonlinear Variational Problems" (Isola d'Elba, 1983), Res. Notes Math., 127, Pitman, Boston, MA, (1985), 1-8.  Google Scholar

[15]

F. Murat and L. Tartar, $H$-convergence, in "Topics in the Mathematical Modelling of Composites Materials," Progress in Nonlinear Differential Equations, 31, Birkhäuser Boston, Boston, MA, (1997), 21-43.  Google Scholar

[16]

F. Murat and L. Tartar, Calculus of variations and homogenization, in "Topics in the Mathematical Modelling of Composites Materials," Progress in Nonlinear Differential Equations Appl., 31, Birkhäuser Boston, Boston, MA, (1997), 139-173.  Google Scholar

[17]

P. Pedregal, Vector variational problems and applications to optimal design, ESAIM Control Optim. Calc. Var., 11 (2005), 357-381. doi: 10.1051/cocv:2005010.  Google Scholar

[18]

P. Pedregal, "Parametrized Measures and Variational Principles," Progress Nonlinear Differential Equations and Their Applications, 30, Birkhäuser Verlag, Basel, 1997.  Google Scholar

[19]

J. Sokołowski and J.-P. Zolésio, "Introduction to Shape Optimization: Shape Sensitivity Analysis," Springer Series in Computational Mathematics, 16, Springer-Verlag, Berlin, 1992.  Google Scholar

[20]

L. Tartar, An introduction to the homogenization method in optimal design, in "Optimal Shape Design" (Tróia, 1998), Lecture Notes Math., 1740, Springer, Berlin, (2000), 47-156.  Google Scholar

[1]

Giorgio Gnecco, Andrea Bacigalupo. Convex combination of data matrices: PCA perturbation bounds for multi-objective optimal design of mechanical metafilters. Mathematical Foundations of Computing, 2021, 4 (4) : 253-269. doi: 10.3934/mfc.2021014

[2]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, 2021, 20 (2) : 533-545. doi: 10.3934/cpaa.2020279

[3]

Luis Caffarelli, Antoine Mellet. Random homogenization of fractional obstacle problems. Networks & Heterogeneous Media, 2008, 3 (3) : 523-554. doi: 10.3934/nhm.2008.3.523

[4]

Robert Ebihart Msigwa, Yue Lu, Xiantao Xiao, Liwei Zhang. A perturbation-based approach for continuous network design problem with emissions. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 135-149. doi: 10.3934/naco.2015.5.135

[5]

Qingshan Yang, Xuerong Mao. Stochastic dynamics of SIRS epidemic models with random perturbation. Mathematical Biosciences & Engineering, 2014, 11 (4) : 1003-1025. doi: 10.3934/mbe.2014.11.1003

[6]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[7]

Nicolas Forcadel, Wilfredo Salazar, Mamdouh Zaydan. Homogenization of second order discrete model with local perturbation and application to traffic flow. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1437-1487. doi: 10.3934/dcds.2017060

[8]

Yangyang Shi, Hongjun Gao. Homogenization for stochastic reaction-diffusion equations with singular perturbation term. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021137

[9]

H. T. Banks, R. A. Everett, Neha Murad, R. D. White, J. E. Banks, Bodil N. Cass, Jay A. Rosenheim. Optimal design for dynamical modeling of pest populations. Mathematical Biosciences & Engineering, 2018, 15 (4) : 993-1010. doi: 10.3934/mbe.2018044

[10]

K.F.C. Yiu, K.L. Mak, K. L. Teo. Airfoil design via optimal control theory. Journal of Industrial & Management Optimization, 2005, 1 (1) : 133-148. doi: 10.3934/jimo.2005.1.133

[11]

Boris P. Belinskiy. Optimal design of an optical length of a rod with the given mass. Conference Publications, 2007, 2007 (Special) : 85-91. doi: 10.3934/proc.2007.2007.85

[12]

Xueling Zhou, Bingo Wing-Kuen Ling, Hai Huyen Dam, Kok-Lay Teo. Optimal design of window functions for filter window bank. Journal of Industrial & Management Optimization, 2021, 17 (3) : 1119-1145. doi: 10.3934/jimo.2020014

[13]

Yannick Privat, Emmanuel Trélat. Optimal design of sensors for a damped wave equation. Conference Publications, 2015, 2015 (special) : 936-944. doi: 10.3934/proc.2015.0936

[14]

Wei Xu, Liying Yu, Gui-Hua Lin, Zhi Guo Feng. Optimal switching signal design with a cost on switching action. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2531-2549. doi: 10.3934/jimo.2019068

[15]

Florian Dorsch, Hermann Schulz-Baldes. Random Möbius dynamics on the unit disc and perturbation theory for Lyapunov exponents. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021076

[16]

Bin Li, Kok Lay Teo, Cheng-Chew Lim, Guang Ren Duan. An optimal PID controller design for nonlinear constrained optimal control problems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1101-1117. doi: 10.3934/dcdsb.2011.16.1101

[17]

Wenjia Jing, Olivier Pinaud. A backscattering model based on corrector theory of homogenization for the random Helmholtz equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5377-5407. doi: 10.3934/dcdsb.2019063

[18]

Guillaume Bal. Homogenization in random media and effective medium theory for high frequency waves. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 473-492. doi: 10.3934/dcdsb.2007.8.473

[19]

Gengsheng Wang, Guojie Zheng. The optimal control to restore the periodic property of a linear evolution system with small perturbation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1621-1639. doi: 10.3934/dcdsb.2010.14.1621

[20]

Erik Kropat. Homogenization of optimal control problems on curvilinear networks with a periodic microstructure --Results on $\boldsymbol{S}$-homogenization and $\boldsymbol{Γ}$-convergence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 51-76. doi: 10.3934/naco.2017003

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]