December  2011, 31(4): 1129-1150. doi: 10.3934/dcds.2011.31.1129

Uniform density estimates for Blake & Zisserman functional

1. 

Università del Salento, Dipartimento di Matematica “Ennio De Giorgi”, 73100 Lecce, Italy, Italy

2. 

Politecnico di Milano, Dipartimento di Matematica “Francesco Brioschi”, 20133 Milano, Italy

Received  November 2009 Revised  March 2010 Published  September 2011

We prove density estimates and elimination properties for minimizing triplets of functionals which are related to contour detection in image segmentation and depend on free discontinuities, free gradient discontinuities and second order derivatives. All the estimates concern optimal segmentation under Dirichlet boundary conditions and are uniform in the image domain up to the boundary.
Citation: Michele Carriero, Antonio Leaci, Franco Tomarelli. Uniform density estimates for Blake & Zisserman functional. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1129-1150. doi: 10.3934/dcds.2011.31.1129
References:
[1]

L. Ambrosio, L. Faina and R. March, Variational approximation of a second order free discontinuity problem in computer vision,, SIAM J. Math. Anal., 32 (2001), 1171.  doi: 10.1137/S0036141000368326.  Google Scholar

[2]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variations and Free Discontinuity Problems,", Oxford Mathematical Monographs, (2000).   Google Scholar

[3]

L. Ambrosio and V. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via $\Gamma$-convergence,, Comm. Pure Appl. Math., 43 (1990), 999.  doi: 10.1002/cpa.3160430805.  Google Scholar

[4]

A. Blake and A. Zisserman, "Visual Reconstruction,", The MIT Press Series in Artificial Intelligence, (1987).   Google Scholar

[5]

T. Boccellari and F. Tomarelli, About well-posedness of optimal segmentation for Blake & Zisserman functional,, Istituto Lombardo (Rend. Cl. Sci. Mat. Nat.), 142 (2008), 237.   Google Scholar

[6]

T. Boccellari and F. Tomarelli, Generic uniqueness of minimizer for Blake & Zisserman functional,, Dip. Matematica, QDD 66 (2010), 1.   Google Scholar

[7]

M. Carriero, A. Farina and I. Sgura, Image segmentation in the framework of free discontinuity problems,, in, 14 (2004), 85.   Google Scholar

[8]

M. Carriero and A. Leaci, Existence theorem for a Dirichlet problem with free dicontinuity set,, Nonlinear Analysis, 15 (1990), 661.  doi: 10.1016/0362-546X(90)90006-3.  Google Scholar

[9]

M. Carriero, A. Leaci and F. Tomarelli, Free gradient discontinuities,, in, 18 (1993), 131.   Google Scholar

[10]

M. Carriero, A. Leaci and F. Tomarelli, A second order model in image segmentation: Blake & Zisserman functional,, in, 25 (1994), 57.   Google Scholar

[11]

M. Carriero, A. Leaci and F. Tomarelli, Strong minimizers of Blake & Zisserman functional,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25 (1997), 257.   Google Scholar

[12]

M. Carriero, A. Leaci and F. Tomarelli, Density estimates and further properties of Blake & Zisserman functional,, in, 55 (2001), 381.   Google Scholar

[13]

M. Carriero, A. Leaci and F. Tomarelli, Necessary conditions for extremals of Blake & Zisserman functional,, C. R. Math. Acad. Sci. Paris, 334 (2002), 343.   Google Scholar

[14]

M. Carriero, A. Leaci and F. Tomarelli, Local minimizers for a free gradient discontinuity problem in image segmentation,, in, 51 (2002), 67.   Google Scholar

[15]

M. Carriero, A. Leaci and F. Tomarelli, Calculus of variations and image segmentation,, J. of Physiology, 97 (2003), 343.  doi: 10.1016/j.jphysparis.2003.09.008.  Google Scholar

[16]

M. Carriero, A. Leaci and F. Tomarelli, Second order variational problems with free discontinuity and free gradient discontinuity,, in, 14 (2004), 135.   Google Scholar

[17]

M. Carriero, A. Leaci and F. Tomarelli, Euler equations for Blake & Zisserman functional,, Calc. Var. Partial Differential Equations, 32 (2008), 81.   Google Scholar

[18]

M. Carriero, A. Leaci and F. Tomarelli, A Dirichlet problem with free gradient discontinuity,, Adv. Math. Sci. Appl., 20 (2010), 107.   Google Scholar

[19]

M. Carriero, A. Leaci and F. Tomarelli, A candidate local minimizer of Blake & Zisserman functional,, J. Math. Pures Appl., 96 (2011), 58.  doi: 10.1016/j.matpur.2011.01.005.  Google Scholar

[20]

M. Carriero, A. Leaci and F. Tomarelli, Variational approach to image segmentation,, Pure Math. Appl. (Pu.M.A.), 20 (2009), 141.   Google Scholar

[21]

M. Carriero, A. Leaci and F. Tomarelli, About Poincaré inequalities for functions lacking summability,, Note Mat., 31 (2011), 67.   Google Scholar

[22]

M. Carriero, A. Leaci and F. Tomarelli, Free gradient discontinuity and image inpaintig,, Proc. Steklov Inst. Math., (2011).   Google Scholar

[23]

V. Caselles, G. Haro, G. Sapiro and J. Verdera, On geometric variational models for inpainting surface holes,, Computer Vision and Image Understanding, 111 (2008), 351.  doi: 10.1016/j.cviu.2008.01.002.  Google Scholar

[24]

T. Chan, S. Esedoglu, F. Park and A. Yip, Total variation image restoration: Overview and recent developments,, in, (2006), 17.  doi: 10.1007/0-387-28831-7_2.  Google Scholar

[25]

E. De Giorgi, Free discontinuity problems in calculus of variations,, in, (1991), 55.   Google Scholar

[26]

E. De Giorgi and L. Ambrosio, Un nuovo tipo di funzionale del Calcolo delle Variazioni (Italian), [New functionals in the calculus of variations], 82 (1988), 199.   Google Scholar

[27]

R. J. Duffin, Continuation of biharmonic functions by reflection,, Duke Math. J., 22 (1955), 313.  doi: 10.1215/S0012-7094-55-02233-X.  Google Scholar

[28]

S. Esedoglu and J. Shen, Digital inpainting based on the Mumford-Shah-Euler image model,, European J. Appl. Math., 13 (2002), 353.  doi: 10.1017/S0956792502004904.  Google Scholar

[29]

H. Federer, "Geometric Measure Theory,", Die Grundlehren der Mathematischen Wissenschaften, 153 (1969).   Google Scholar

[30]

M. Giaquinta, "Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems,", Ann. Math. Stud., 105 (1983).   Google Scholar

[31]

F. A. Lops, F. Maddalena and S. Solimini, Hölder continuity conditions for the solvability of Dirichlet problems involving functionals with free discontinuities,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 639.   Google Scholar

[32]

R. March, Visual reconstruction with discontinuities using variational methods,, Image and Vision Computing, 10 (1992), 30.  doi: 10.1016/0262-8856(92)90081-D.  Google Scholar

[33]

J.-M. Morel and S. Solimini, "Variational Methods in Image Segmentation. With Seven Image Processing Experiments,", Progr. Nonlinear Differential Equations Appl., 14 (1995).   Google Scholar

[34]

D. Mumford and J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems,, Comm. Pure Appl. Math., 42 (1989), 577.  doi: 10.1002/cpa.3160420503.  Google Scholar

[35]

J. Verdera, V. Caselles, M. Bertalmio and G. Sapiro, Inpainting surface holes,, Int. Conference on Image Processing, (2003), 903.   Google Scholar

show all references

References:
[1]

L. Ambrosio, L. Faina and R. March, Variational approximation of a second order free discontinuity problem in computer vision,, SIAM J. Math. Anal., 32 (2001), 1171.  doi: 10.1137/S0036141000368326.  Google Scholar

[2]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variations and Free Discontinuity Problems,", Oxford Mathematical Monographs, (2000).   Google Scholar

[3]

L. Ambrosio and V. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via $\Gamma$-convergence,, Comm. Pure Appl. Math., 43 (1990), 999.  doi: 10.1002/cpa.3160430805.  Google Scholar

[4]

A. Blake and A. Zisserman, "Visual Reconstruction,", The MIT Press Series in Artificial Intelligence, (1987).   Google Scholar

[5]

T. Boccellari and F. Tomarelli, About well-posedness of optimal segmentation for Blake & Zisserman functional,, Istituto Lombardo (Rend. Cl. Sci. Mat. Nat.), 142 (2008), 237.   Google Scholar

[6]

T. Boccellari and F. Tomarelli, Generic uniqueness of minimizer for Blake & Zisserman functional,, Dip. Matematica, QDD 66 (2010), 1.   Google Scholar

[7]

M. Carriero, A. Farina and I. Sgura, Image segmentation in the framework of free discontinuity problems,, in, 14 (2004), 85.   Google Scholar

[8]

M. Carriero and A. Leaci, Existence theorem for a Dirichlet problem with free dicontinuity set,, Nonlinear Analysis, 15 (1990), 661.  doi: 10.1016/0362-546X(90)90006-3.  Google Scholar

[9]

M. Carriero, A. Leaci and F. Tomarelli, Free gradient discontinuities,, in, 18 (1993), 131.   Google Scholar

[10]

M. Carriero, A. Leaci and F. Tomarelli, A second order model in image segmentation: Blake & Zisserman functional,, in, 25 (1994), 57.   Google Scholar

[11]

M. Carriero, A. Leaci and F. Tomarelli, Strong minimizers of Blake & Zisserman functional,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25 (1997), 257.   Google Scholar

[12]

M. Carriero, A. Leaci and F. Tomarelli, Density estimates and further properties of Blake & Zisserman functional,, in, 55 (2001), 381.   Google Scholar

[13]

M. Carriero, A. Leaci and F. Tomarelli, Necessary conditions for extremals of Blake & Zisserman functional,, C. R. Math. Acad. Sci. Paris, 334 (2002), 343.   Google Scholar

[14]

M. Carriero, A. Leaci and F. Tomarelli, Local minimizers for a free gradient discontinuity problem in image segmentation,, in, 51 (2002), 67.   Google Scholar

[15]

M. Carriero, A. Leaci and F. Tomarelli, Calculus of variations and image segmentation,, J. of Physiology, 97 (2003), 343.  doi: 10.1016/j.jphysparis.2003.09.008.  Google Scholar

[16]

M. Carriero, A. Leaci and F. Tomarelli, Second order variational problems with free discontinuity and free gradient discontinuity,, in, 14 (2004), 135.   Google Scholar

[17]

M. Carriero, A. Leaci and F. Tomarelli, Euler equations for Blake & Zisserman functional,, Calc. Var. Partial Differential Equations, 32 (2008), 81.   Google Scholar

[18]

M. Carriero, A. Leaci and F. Tomarelli, A Dirichlet problem with free gradient discontinuity,, Adv. Math. Sci. Appl., 20 (2010), 107.   Google Scholar

[19]

M. Carriero, A. Leaci and F. Tomarelli, A candidate local minimizer of Blake & Zisserman functional,, J. Math. Pures Appl., 96 (2011), 58.  doi: 10.1016/j.matpur.2011.01.005.  Google Scholar

[20]

M. Carriero, A. Leaci and F. Tomarelli, Variational approach to image segmentation,, Pure Math. Appl. (Pu.M.A.), 20 (2009), 141.   Google Scholar

[21]

M. Carriero, A. Leaci and F. Tomarelli, About Poincaré inequalities for functions lacking summability,, Note Mat., 31 (2011), 67.   Google Scholar

[22]

M. Carriero, A. Leaci and F. Tomarelli, Free gradient discontinuity and image inpaintig,, Proc. Steklov Inst. Math., (2011).   Google Scholar

[23]

V. Caselles, G. Haro, G. Sapiro and J. Verdera, On geometric variational models for inpainting surface holes,, Computer Vision and Image Understanding, 111 (2008), 351.  doi: 10.1016/j.cviu.2008.01.002.  Google Scholar

[24]

T. Chan, S. Esedoglu, F. Park and A. Yip, Total variation image restoration: Overview and recent developments,, in, (2006), 17.  doi: 10.1007/0-387-28831-7_2.  Google Scholar

[25]

E. De Giorgi, Free discontinuity problems in calculus of variations,, in, (1991), 55.   Google Scholar

[26]

E. De Giorgi and L. Ambrosio, Un nuovo tipo di funzionale del Calcolo delle Variazioni (Italian), [New functionals in the calculus of variations], 82 (1988), 199.   Google Scholar

[27]

R. J. Duffin, Continuation of biharmonic functions by reflection,, Duke Math. J., 22 (1955), 313.  doi: 10.1215/S0012-7094-55-02233-X.  Google Scholar

[28]

S. Esedoglu and J. Shen, Digital inpainting based on the Mumford-Shah-Euler image model,, European J. Appl. Math., 13 (2002), 353.  doi: 10.1017/S0956792502004904.  Google Scholar

[29]

H. Federer, "Geometric Measure Theory,", Die Grundlehren der Mathematischen Wissenschaften, 153 (1969).   Google Scholar

[30]

M. Giaquinta, "Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems,", Ann. Math. Stud., 105 (1983).   Google Scholar

[31]

F. A. Lops, F. Maddalena and S. Solimini, Hölder continuity conditions for the solvability of Dirichlet problems involving functionals with free discontinuities,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 639.   Google Scholar

[32]

R. March, Visual reconstruction with discontinuities using variational methods,, Image and Vision Computing, 10 (1992), 30.  doi: 10.1016/0262-8856(92)90081-D.  Google Scholar

[33]

J.-M. Morel and S. Solimini, "Variational Methods in Image Segmentation. With Seven Image Processing Experiments,", Progr. Nonlinear Differential Equations Appl., 14 (1995).   Google Scholar

[34]

D. Mumford and J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems,, Comm. Pure Appl. Math., 42 (1989), 577.  doi: 10.1002/cpa.3160420503.  Google Scholar

[35]

J. Verdera, V. Caselles, M. Bertalmio and G. Sapiro, Inpainting surface holes,, Int. Conference on Image Processing, (2003), 903.   Google Scholar

[1]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[2]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[3]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[4]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[5]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[6]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[7]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[8]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[9]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[10]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (6)

[Back to Top]