March  2011, 31(1): 119-138. doi: 10.3934/dcds.2011.31.119

Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent

1. 

Department of Mathematics, Faculty of Science, Hacettepe University, Beytepe 06800, Ankara, Turkey

Received  March 2010 Revised  December 2010 Published  June 2011

In this paper the long time behaviour of the solutions of the 3-D strongly damped wave equation is studied. It is shown that the semigroup generated by this equation possesses a global attractor in $H_{0}^{1}(\Omega )\times L_{2}(\Omega )$ and then it is proved that this is also a global attractor in $(H^{2}(\Omega )\cap H_{0}^{1}(\Omega ))\times H_{0}^{1}(\Omega )$.
Citation: A. Kh. Khanmamedov. Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 119-138. doi: 10.3934/dcds.2011.31.119
References:
[1]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", Studies in Mathematics and its Applications, 25 (1992).   Google Scholar

[2]

A. N. Carvalho and J. W. Cholewa, Attractors for strongly damped wave equations with critical nonlinearities,, Pacific J. Math., 207 (2002), 287.   Google Scholar

[3]

I. Chueshov and S. Kolbasin, Long-time dynamics in plate models with strong nonlinear damping,, \arXiv{1010.4991}., ().   Google Scholar

[4]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping,, Memoirs of AMS, 195 (2008).   Google Scholar

[5]

M. Conti and V. Pata, On the regulariaty of global attractors,, Discrete Contin. Dynam. Systems, 25 (2009), 1209.   Google Scholar

[6]

B. Duffy, P. Freitas and M. Grinfeld, Memory driven instability in a diffusion process,, SIAM J. Math. Anal., 33 (2002), 1090.   Google Scholar

[7]

V. Kalantarov, Attractors for some nonlinear problems of mathematical physics,, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 152 (1986), 50.   Google Scholar

[8]

V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly-damped wave equation,, J. Diff. Equations, 247 (2009), 1120.   Google Scholar

[9]

A. Kh. Khanmamedov, Global attractors for 2-D wave equations with displacement-dependent damping,, Math. Methods Appl. Sci., 33 (2010), 177.   Google Scholar

[10]

A. Kh. Khanmamedov, Remark on the regularity of the global attractor for the wave equation with nonlinear damping,, Nonlinear Analysis, 72 (2010), 1993.   Google Scholar

[11]

A. Kh. Khanmamedov, A strong global attractor for 3-D wave equations with displacement dependent damping,, Appl. Math. Letters, 23 (2010), 928.   Google Scholar

[12]

J.-L. Lions and E. Magenes, "Non-homogeneous Boundary Value Problems and Applications,", \textbf{1}, 1 (1972).   Google Scholar

[13]

W. E. Olmstead, S. H. Davis, S. Rosenblat and W. L. Kath, Bifurcation with memory,, SIAM J. Appl. Math., 46 (1986), 171.   Google Scholar

[14]

V. Pata and M. Squassina, On the strongly damped wave equation,, Commun. Math. Phys., 253 (2005), 511.   Google Scholar

[15]

V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations,, Nonlinearity, 19 (2006), 1495.   Google Scholar

[16]

V. Pata and S. Zelik, Global and exponential attractors for 3-D wave equations with displacement dependent damping,, Math. Methods Appl. Sci., 29 (2006), 1291.   Google Scholar

[17]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", Applied Mathematical Sciences, 68 (1988).   Google Scholar

[18]

J. Simon, Compact sets in the space $L_p(0, T;B)$,, Annali Mat. Pura Appl., 146 (1987), 65.   Google Scholar

[19]

C. Sun, D. Cao and J. Duan, Non-autonomous wave dynamics with memory-asymptotic regularity and uniform attractor,, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 743.   Google Scholar

[20]

M. Yang and C. Sun, Attractors for strongly damped wave equations,, Nonlinear Analysis: Real World Applications, 10 (2009), 1097.   Google Scholar

[21]

S. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent,, Commun. Pure Appl. Anal., 3 (2004), 921.   Google Scholar

[22]

S. Zhou, Global attractor for strongly damped nonlinear wave equations,, Funct. Diff. Eqns., 6 (1999), 451.   Google Scholar

show all references

References:
[1]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", Studies in Mathematics and its Applications, 25 (1992).   Google Scholar

[2]

A. N. Carvalho and J. W. Cholewa, Attractors for strongly damped wave equations with critical nonlinearities,, Pacific J. Math., 207 (2002), 287.   Google Scholar

[3]

I. Chueshov and S. Kolbasin, Long-time dynamics in plate models with strong nonlinear damping,, \arXiv{1010.4991}., ().   Google Scholar

[4]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping,, Memoirs of AMS, 195 (2008).   Google Scholar

[5]

M. Conti and V. Pata, On the regulariaty of global attractors,, Discrete Contin. Dynam. Systems, 25 (2009), 1209.   Google Scholar

[6]

B. Duffy, P. Freitas and M. Grinfeld, Memory driven instability in a diffusion process,, SIAM J. Math. Anal., 33 (2002), 1090.   Google Scholar

[7]

V. Kalantarov, Attractors for some nonlinear problems of mathematical physics,, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 152 (1986), 50.   Google Scholar

[8]

V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly-damped wave equation,, J. Diff. Equations, 247 (2009), 1120.   Google Scholar

[9]

A. Kh. Khanmamedov, Global attractors for 2-D wave equations with displacement-dependent damping,, Math. Methods Appl. Sci., 33 (2010), 177.   Google Scholar

[10]

A. Kh. Khanmamedov, Remark on the regularity of the global attractor for the wave equation with nonlinear damping,, Nonlinear Analysis, 72 (2010), 1993.   Google Scholar

[11]

A. Kh. Khanmamedov, A strong global attractor for 3-D wave equations with displacement dependent damping,, Appl. Math. Letters, 23 (2010), 928.   Google Scholar

[12]

J.-L. Lions and E. Magenes, "Non-homogeneous Boundary Value Problems and Applications,", \textbf{1}, 1 (1972).   Google Scholar

[13]

W. E. Olmstead, S. H. Davis, S. Rosenblat and W. L. Kath, Bifurcation with memory,, SIAM J. Appl. Math., 46 (1986), 171.   Google Scholar

[14]

V. Pata and M. Squassina, On the strongly damped wave equation,, Commun. Math. Phys., 253 (2005), 511.   Google Scholar

[15]

V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations,, Nonlinearity, 19 (2006), 1495.   Google Scholar

[16]

V. Pata and S. Zelik, Global and exponential attractors for 3-D wave equations with displacement dependent damping,, Math. Methods Appl. Sci., 29 (2006), 1291.   Google Scholar

[17]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", Applied Mathematical Sciences, 68 (1988).   Google Scholar

[18]

J. Simon, Compact sets in the space $L_p(0, T;B)$,, Annali Mat. Pura Appl., 146 (1987), 65.   Google Scholar

[19]

C. Sun, D. Cao and J. Duan, Non-autonomous wave dynamics with memory-asymptotic regularity and uniform attractor,, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 743.   Google Scholar

[20]

M. Yang and C. Sun, Attractors for strongly damped wave equations,, Nonlinear Analysis: Real World Applications, 10 (2009), 1097.   Google Scholar

[21]

S. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent,, Commun. Pure Appl. Anal., 3 (2004), 921.   Google Scholar

[22]

S. Zhou, Global attractor for strongly damped nonlinear wave equations,, Funct. Diff. Eqns., 6 (1999), 451.   Google Scholar

[1]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[2]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[3]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[4]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[5]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[6]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[7]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[8]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[9]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[10]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[11]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[12]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[13]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[14]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[15]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[16]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[17]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[18]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[19]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[20]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]