December  2011, 31(4): 1197-1218. doi: 10.3934/dcds.2011.31.1197

On the regularization of the collision solutions of the one-center problem with weak forces

1. 

BCAM - Basque Center for Applied Mathematics, Bizkaia Technology Park, 48160 Derio, Bizkaia,, Spain

2. 

Università di Milano Bicocca, Dipartimento di Matematica e Applicazioni, Via Cozzi 53, 20125 Milano

Received  January 2010 Revised  March 2010 Published  September 2011

We study the possible regularization of collision solutions for one centre problems with a weak singularity. In the case of logarithmic singularities, we consider the method of regularization via smoothing of the potential. With this technique, we prove that the extended flow, where collision solutions are replaced with transmission trajectories, is continuous, though not differentiable, with respect to the initial data.
Citation: Roberto Castelli, Susanna Terracini. On the regularization of the collision solutions of the one-center problem with weak forces. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1197-1218. doi: 10.3934/dcds.2011.31.1197
References:
[1]

S. J. Aarseth, Dynamical evolution of clusters of galaxies I, Monthly Notices of the Royal Astronomical Society, 126 (1963), 223-255.

[2]

V. Barutello, D. L. Ferrario and S. Terracini, On the singularities of generalized solutions to $n$-body-type problems, Int. Math. Res. Not. IMRN, (2008), Art. ID rnn 069, 78 pp.

[3]

G. Bellettini, G. Fusco and G. F. Gronchi, Regularization of the two-body problem via smoothing the potential, Commun. Pure Appl. Anal., 2 (2003), 323-353. doi: 10.3934/cpaa.2003.2.323.

[4]

E. De Giorgi, Conjectures concerning some evolution problems, A celebration of John F. Nash, Jr., Duke Math. J., 81 (1996), 255-268. doi: 10.1215/S0012-7094-96-08114-4.

[5]

C. C. Dyer and P. S. S. Ip, Softening in N-body simulations of collisionless systems, Astrophysical Journal, 409 (1993), 60-67. doi: 10.1086/172641.

[6]

R. Easton, Regularization of vector fields by surgery, J. Differential Equations, 10 (1971), 92-99.

[7]

D. L. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical $n$-body problem, Invent. Math., 155 (2004), 305-362. doi: 10.1007/s00222-003-0322-7.

[8]

W. B. Gordon, A minimizing property of Keplerian orbits, Amer. J. Math., 99 (1977), 961-971. doi: 10.2307/2373993.

[9]

L. Hernquist and J. E. Barnes, Are some n-body algorithms intrinsically less collisional than others?, Astrophysical Journal, 349 (1990), 562-569. doi: 10.1086/168343.

[10]

P. Kustaanheimo and E. Stiefel, Perturbation theory of Kepler motion based on spinor regularization, J. Reine Angew. Math., 218 (1965), 204-219. doi: 10.1515/crll.1965.218.204.

[11]

T. Levi-Civita, Sur la régularisation du problème des trois corps, Acta Math., 42 (1920), 99-144. doi: 10.1007/BF02404404.

[12]

R. McGehee, Double collisions for a classical particle system with nongravitational interactions, Comment. Math. Helv., 56 (1981), 524-557. doi: 10.1007/BF02566226.

[13]

J. Moser, Regularization of Kepler's problem and the averaging method on a manifold, Comm. Pure Appl. Math., 23 (1970), 609-636. doi: 10.1002/cpa.3160230406.

[14]

C. L. Siegel and J. K. Moser, "Lectures on Celestial Mechanics," Classics in Mathematics, Springer-Verlag, Berlin, 1995.

[15]

C. Stoica and A. Font, Global dynamics in the singular logarithmic potential, J. Phys. A, 36 (2003), 7693-7714. doi: 10.1088/0305-4470/36/28/302.

[16]

V. G. Szebehely, "Theory of Orbits -- The Restricted Problem of Three Bodies," Academic Press, New York, 1967.

[17]

J. Touma and S. Tremaine, A map for eccentric orbits in non-axisymmetric potentials, MNRAS, 292 (1997), 905-932.

[18]

E. T. Whittaker, "A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: With an Introduction to the Problem of Three Bodies," 4th edition, Cambridge University Press, New York, 1959.

show all references

References:
[1]

S. J. Aarseth, Dynamical evolution of clusters of galaxies I, Monthly Notices of the Royal Astronomical Society, 126 (1963), 223-255.

[2]

V. Barutello, D. L. Ferrario and S. Terracini, On the singularities of generalized solutions to $n$-body-type problems, Int. Math. Res. Not. IMRN, (2008), Art. ID rnn 069, 78 pp.

[3]

G. Bellettini, G. Fusco and G. F. Gronchi, Regularization of the two-body problem via smoothing the potential, Commun. Pure Appl. Anal., 2 (2003), 323-353. doi: 10.3934/cpaa.2003.2.323.

[4]

E. De Giorgi, Conjectures concerning some evolution problems, A celebration of John F. Nash, Jr., Duke Math. J., 81 (1996), 255-268. doi: 10.1215/S0012-7094-96-08114-4.

[5]

C. C. Dyer and P. S. S. Ip, Softening in N-body simulations of collisionless systems, Astrophysical Journal, 409 (1993), 60-67. doi: 10.1086/172641.

[6]

R. Easton, Regularization of vector fields by surgery, J. Differential Equations, 10 (1971), 92-99.

[7]

D. L. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical $n$-body problem, Invent. Math., 155 (2004), 305-362. doi: 10.1007/s00222-003-0322-7.

[8]

W. B. Gordon, A minimizing property of Keplerian orbits, Amer. J. Math., 99 (1977), 961-971. doi: 10.2307/2373993.

[9]

L. Hernquist and J. E. Barnes, Are some n-body algorithms intrinsically less collisional than others?, Astrophysical Journal, 349 (1990), 562-569. doi: 10.1086/168343.

[10]

P. Kustaanheimo and E. Stiefel, Perturbation theory of Kepler motion based on spinor regularization, J. Reine Angew. Math., 218 (1965), 204-219. doi: 10.1515/crll.1965.218.204.

[11]

T. Levi-Civita, Sur la régularisation du problème des trois corps, Acta Math., 42 (1920), 99-144. doi: 10.1007/BF02404404.

[12]

R. McGehee, Double collisions for a classical particle system with nongravitational interactions, Comment. Math. Helv., 56 (1981), 524-557. doi: 10.1007/BF02566226.

[13]

J. Moser, Regularization of Kepler's problem and the averaging method on a manifold, Comm. Pure Appl. Math., 23 (1970), 609-636. doi: 10.1002/cpa.3160230406.

[14]

C. L. Siegel and J. K. Moser, "Lectures on Celestial Mechanics," Classics in Mathematics, Springer-Verlag, Berlin, 1995.

[15]

C. Stoica and A. Font, Global dynamics in the singular logarithmic potential, J. Phys. A, 36 (2003), 7693-7714. doi: 10.1088/0305-4470/36/28/302.

[16]

V. G. Szebehely, "Theory of Orbits -- The Restricted Problem of Three Bodies," Academic Press, New York, 1967.

[17]

J. Touma and S. Tremaine, A map for eccentric orbits in non-axisymmetric potentials, MNRAS, 292 (1997), 905-932.

[18]

E. T. Whittaker, "A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: With an Introduction to the Problem of Three Bodies," 4th edition, Cambridge University Press, New York, 1959.

[1]

G. Bellettini, G. Fusco, G. F. Gronchi. Regularization of the two-body problem via smoothing the potential. Communications on Pure and Applied Analysis, 2003, 2 (3) : 323-353. doi: 10.3934/cpaa.2003.2.323

[2]

Boumediene Abdellaoui, Ahmed Attar. Quasilinear elliptic problem with Hardy potential and singular term. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1363-1380. doi: 10.3934/cpaa.2013.12.1363

[3]

Vasile Mioc, Ernesto Pérez-Chavela. The 2-body problem under Fock's potential. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 611-629. doi: 10.3934/dcdss.2008.1.611

[4]

Nicolas Forcadel, Cyril Imbert, Régis Monneau. Homogenization of some particle systems with two-body interactions and of the dislocation dynamics. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 785-826. doi: 10.3934/dcds.2009.23.785

[5]

Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042

[6]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[7]

Scipio Cuccagna, Masaya Maeda. On weak interaction between a ground state and a trapping potential. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3343-3376. doi: 10.3934/dcds.2015.35.3343

[8]

Laurence Cherfils, Stefania Gatti, Alain Miranville. A doubly nonlinear parabolic equation with a singular potential. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 51-66. doi: 10.3934/dcdss.2011.4.51

[9]

Younghun Hong. Strichartz estimates for $N$-body Schrödinger operators with small potential interactions. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5355-5365. doi: 10.3934/dcds.2017233

[10]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[11]

David Gómez-Castro, Juan Luis Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 7113-7139. doi: 10.3934/dcds.2019298

[12]

Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827

[13]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a phase field system with a possibly singular potential. Mathematical Control and Related Fields, 2016, 6 (1) : 95-112. doi: 10.3934/mcrf.2016.6.95

[14]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a conserved phase field system with a possibly singular potential. Evolution Equations and Control Theory, 2018, 7 (1) : 95-116. doi: 10.3934/eect.2018006

[15]

Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3347-3371. doi: 10.3934/cpaa.2021108

[16]

Kazuhiro Ishige, Y. Kabeya. Hot spots for the two dimensional heat equation with a rapidly decaying negative potential. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 833-849. doi: 10.3934/dcdss.2011.4.833

[17]

Yulia Karpeshina and Young-Ran Lee. On polyharmonic operators with limit-periodic potential in dimension two. Electronic Research Announcements, 2006, 12: 113-120.

[18]

Chjan C. Lim, Joseph Nebus, Syed M. Assad. Monte-Carlo and polyhedron-based simulations I: extremal states of the logarithmic N-body problem on a sphere. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 313-342. doi: 10.3934/dcdsb.2003.3.313

[19]

Fengming Ma, Yiju Wang, Hongge Zhao. A potential reduction method for the generalized linear complementarity problem over a polyhedral cone. Journal of Industrial and Management Optimization, 2010, 6 (1) : 259-267. doi: 10.3934/jimo.2010.6.259

[20]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2589-2618. doi: 10.3934/dcds.2017111

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]