December  2011, 31(4): 1197-1218. doi: 10.3934/dcds.2011.31.1197

On the regularization of the collision solutions of the one-center problem with weak forces

1. 

BCAM - Basque Center for Applied Mathematics, Bizkaia Technology Park, 48160 Derio, Bizkaia,, Spain

2. 

Università di Milano Bicocca, Dipartimento di Matematica e Applicazioni, Via Cozzi 53, 20125 Milano

Received  January 2010 Revised  March 2010 Published  September 2011

We study the possible regularization of collision solutions for one centre problems with a weak singularity. In the case of logarithmic singularities, we consider the method of regularization via smoothing of the potential. With this technique, we prove that the extended flow, where collision solutions are replaced with transmission trajectories, is continuous, though not differentiable, with respect to the initial data.
Citation: Roberto Castelli, Susanna Terracini. On the regularization of the collision solutions of the one-center problem with weak forces. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1197-1218. doi: 10.3934/dcds.2011.31.1197
References:
[1]

S. J. Aarseth, Dynamical evolution of clusters of galaxies I,, Monthly Notices of the Royal Astronomical Society, 126 (1963), 223.   Google Scholar

[2]

V. Barutello, D. L. Ferrario and S. Terracini, On the singularities of generalized solutions to $n$-body-type problems,, Int. Math. Res. Not. IMRN, (2008).   Google Scholar

[3]

G. Bellettini, G. Fusco and G. F. Gronchi, Regularization of the two-body problem via smoothing the potential,, Commun. Pure Appl. Anal., 2 (2003), 323.  doi: 10.3934/cpaa.2003.2.323.  Google Scholar

[4]

E. De Giorgi, Conjectures concerning some evolution problems,, A celebration of John F. Nash, 81 (1996), 255.  doi: 10.1215/S0012-7094-96-08114-4.  Google Scholar

[5]

C. C. Dyer and P. S. S. Ip, Softening in N-body simulations of collisionless systems,, Astrophysical Journal, 409 (1993), 60.  doi: 10.1086/172641.  Google Scholar

[6]

R. Easton, Regularization of vector fields by surgery,, J. Differential Equations, 10 (1971), 92.   Google Scholar

[7]

D. L. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical $n$-body problem,, Invent. Math., 155 (2004), 305.  doi: 10.1007/s00222-003-0322-7.  Google Scholar

[8]

W. B. Gordon, A minimizing property of Keplerian orbits,, Amer. J. Math., 99 (1977), 961.  doi: 10.2307/2373993.  Google Scholar

[9]

L. Hernquist and J. E. Barnes, Are some n-body algorithms intrinsically less collisional than others?,, Astrophysical Journal, 349 (1990), 562.  doi: 10.1086/168343.  Google Scholar

[10]

P. Kustaanheimo and E. Stiefel, Perturbation theory of Kepler motion based on spinor regularization,, J. Reine Angew. Math., 218 (1965), 204.  doi: 10.1515/crll.1965.218.204.  Google Scholar

[11]

T. Levi-Civita, Sur la régularisation du problème des trois corps,, Acta Math., 42 (1920), 99.  doi: 10.1007/BF02404404.  Google Scholar

[12]

R. McGehee, Double collisions for a classical particle system with nongravitational interactions,, Comment. Math. Helv., 56 (1981), 524.  doi: 10.1007/BF02566226.  Google Scholar

[13]

J. Moser, Regularization of Kepler's problem and the averaging method on a manifold,, Comm. Pure Appl. Math., 23 (1970), 609.  doi: 10.1002/cpa.3160230406.  Google Scholar

[14]

C. L. Siegel and J. K. Moser, "Lectures on Celestial Mechanics,", Classics in Mathematics, (1995).   Google Scholar

[15]

C. Stoica and A. Font, Global dynamics in the singular logarithmic potential,, J. Phys. A, 36 (2003), 7693.  doi: 10.1088/0305-4470/36/28/302.  Google Scholar

[16]

V. G. Szebehely, "Theory of Orbits -- The Restricted Problem of Three Bodies,", Academic Press, (1967).   Google Scholar

[17]

J. Touma and S. Tremaine, A map for eccentric orbits in non-axisymmetric potentials,, MNRAS, 292 (1997), 905.   Google Scholar

[18]

E. T. Whittaker, "A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: With an Introduction to the Problem of Three Bodies,", 4th edition, (1959).   Google Scholar

show all references

References:
[1]

S. J. Aarseth, Dynamical evolution of clusters of galaxies I,, Monthly Notices of the Royal Astronomical Society, 126 (1963), 223.   Google Scholar

[2]

V. Barutello, D. L. Ferrario and S. Terracini, On the singularities of generalized solutions to $n$-body-type problems,, Int. Math. Res. Not. IMRN, (2008).   Google Scholar

[3]

G. Bellettini, G. Fusco and G. F. Gronchi, Regularization of the two-body problem via smoothing the potential,, Commun. Pure Appl. Anal., 2 (2003), 323.  doi: 10.3934/cpaa.2003.2.323.  Google Scholar

[4]

E. De Giorgi, Conjectures concerning some evolution problems,, A celebration of John F. Nash, 81 (1996), 255.  doi: 10.1215/S0012-7094-96-08114-4.  Google Scholar

[5]

C. C. Dyer and P. S. S. Ip, Softening in N-body simulations of collisionless systems,, Astrophysical Journal, 409 (1993), 60.  doi: 10.1086/172641.  Google Scholar

[6]

R. Easton, Regularization of vector fields by surgery,, J. Differential Equations, 10 (1971), 92.   Google Scholar

[7]

D. L. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical $n$-body problem,, Invent. Math., 155 (2004), 305.  doi: 10.1007/s00222-003-0322-7.  Google Scholar

[8]

W. B. Gordon, A minimizing property of Keplerian orbits,, Amer. J. Math., 99 (1977), 961.  doi: 10.2307/2373993.  Google Scholar

[9]

L. Hernquist and J. E. Barnes, Are some n-body algorithms intrinsically less collisional than others?,, Astrophysical Journal, 349 (1990), 562.  doi: 10.1086/168343.  Google Scholar

[10]

P. Kustaanheimo and E. Stiefel, Perturbation theory of Kepler motion based on spinor regularization,, J. Reine Angew. Math., 218 (1965), 204.  doi: 10.1515/crll.1965.218.204.  Google Scholar

[11]

T. Levi-Civita, Sur la régularisation du problème des trois corps,, Acta Math., 42 (1920), 99.  doi: 10.1007/BF02404404.  Google Scholar

[12]

R. McGehee, Double collisions for a classical particle system with nongravitational interactions,, Comment. Math. Helv., 56 (1981), 524.  doi: 10.1007/BF02566226.  Google Scholar

[13]

J. Moser, Regularization of Kepler's problem and the averaging method on a manifold,, Comm. Pure Appl. Math., 23 (1970), 609.  doi: 10.1002/cpa.3160230406.  Google Scholar

[14]

C. L. Siegel and J. K. Moser, "Lectures on Celestial Mechanics,", Classics in Mathematics, (1995).   Google Scholar

[15]

C. Stoica and A. Font, Global dynamics in the singular logarithmic potential,, J. Phys. A, 36 (2003), 7693.  doi: 10.1088/0305-4470/36/28/302.  Google Scholar

[16]

V. G. Szebehely, "Theory of Orbits -- The Restricted Problem of Three Bodies,", Academic Press, (1967).   Google Scholar

[17]

J. Touma and S. Tremaine, A map for eccentric orbits in non-axisymmetric potentials,, MNRAS, 292 (1997), 905.   Google Scholar

[18]

E. T. Whittaker, "A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: With an Introduction to the Problem of Three Bodies,", 4th edition, (1959).   Google Scholar

[1]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[2]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[3]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[4]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[5]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[6]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[7]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[8]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[9]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[10]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[11]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[12]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[13]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[14]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[15]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[16]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[17]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[18]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[19]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[20]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]