Citation: |
[1] |
L. Ambrosio, On the lower semicontinuity of quasiconvex integrals in $SBV(\Omega,\R^k)$, Nonlinear Anal., 23 (1994), 405-425.doi: 10.1016/0362-546X(94)90180-5. |
[2] |
L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems," Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. |
[3] |
J. M. Ball, Some open problems in elasticity, in "Geometry, Mechanics, and Dynamics" (eds. P. Newton, P. Holmes and A. Weinstein), 3-59, Springer, New York, 2002. |
[4] |
B. Bourdin, G. A. Francfort and J.-J. Marigo, The variational approach to fracture, J. Elasticity, 91 (2008), 5-148.doi: 10.1007/s10659-007-9107-3. |
[5] |
A. Chambolle, A density result in two-dimensional linearized elasticity, and applications, Arch. Ration. Mech. Anal., 167 (2003), 211-233.doi: 10.1007/s00205-002-0240-7. |
[6] |
P. G. Ciarlet, "Mathematical Elasticity. Vol. I. Three-Dimensional Elasticity," Studies in Mathematics and its Applications, 20, North-Holland Publishing Co., Amsterdam, 1988. |
[7] |
P. G. Ciarlet and J. Nečas, Injectivity and self-contact in nonlinear elasticity, Arch. Ration. Mech. Anal., 97 (1987), 171-188.doi: 10.1007/BF00250807. |
[8] |
G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity, Arch. Ration. Mech. Anal., 176 (2005), 165-225.doi: 10.1007/s00205-004-0351-4. |
[9] |
G. Dal Maso and G. Lazzaroni, Quasistatic crack growth in finite elasticity with non-interpenetration, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 257-290. |
[10] |
G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: Existence and approximation results, Arch. Ration. Mech. Anal., 162 (2002), 101-135.doi: 10.1007/s002050100187. |
[11] |
E. De Giorgi and L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 82 (1988), 199-210. |
[12] |
H. Federer, "Geometric Measure Theory," Die Grundlehren der Mathematischen Wissenschaften, 153, Springer-Verlag, New York, 1969. |
[13] |
G. A. Francfort and C. J. Larsen, Existence and convergence for quasi-static evolution in brittle fracture, Comm. Pure Appl. Math., 56 (2003), 1465-1500.doi: 10.1002/cpa.3039. |
[14] |
G. A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46 (1998), 1319-1342.doi: 10.1016/S0022-5096(98)00034-9. |
[15] |
G. A. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies, J. Reine Angew. Math., 595 (2006), 55-91.doi: 10.1515/CRELLE.2006.044. |
[16] |
N. Fusco, C. Leone, R. March and A. Verde, A lower semi-continuity result for polyconvex functionals in SBV, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 321-336.doi: 10.1017/S0308210500004571. |
[17] |
A. Giacomini and M. Ponsiglione, Non interpenetration of matter for $SBV$-deformations of hyperelastic brittle materials, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 1019-1041.doi: 10.1017/S0308210507000121. |
[18] |
A. A. Griffith, The phenomena of rupture and flow in solids, Philos. Trans. Roy. Soc. London Ser. A, 221 (1920), 163-198. |
[19] |
G. Lazzaroni, Quasistatic crack growth in finite elasticity with Lipschitz data, Ann. Mat. Pura Appl. (4), 190 (2011), 165-194.doi: 10.1007/s10231-010-0145-2. |
[20] |
A. Mielke, Evolution of rate-independent systems, in "Evolutionary Equations" (eds. C. M. Dafermos and E. Feireisl), Vol. II, 461-559, Handbook of Differential Equations, Elsevier/North-Holland, Amsterdam, 2005. |
[21] |
R. W. Ogden, Large deformation isotropic elasticity - on the correlation of theory and experiment for incompressible rubberlike solids, Proc. Roy. Soc. London A, 326 (1972), 565-584.doi: 10.1098/rspa.1972.0026. |
[22] |
R. W. Ogden, Large deformation isotropic elasticity: On the correlation of theory and experiment for compressible rubberlike solids, Proc. Roy. Soc. London A, 328 (1972), 567-583.doi: 10.1098/rspa.1972.0096. |