-
Previous Article
Center manifold: A case study
- DCDS Home
- This Issue
-
Next Article
Crack growth with non-interpenetration: A simplified proof for the pure Neumann problem
A variational approach to semilinear elliptic equations with measure data
1. | Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41 - 25121 Brescia, Italy |
2. | Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, Via Cozzi 53 - 20125 Milano, Italy |
References:
[1] |
P. Baras and M. Pierre, Singularités éliminables pour des équations semi-linéaires,, Ann. Inst. Fourier (Grenoble), 34 (1984), 185.
doi: 10.5802/aif.956. |
[2] |
P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vázquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22 (1995), 241. Google Scholar |
[3] |
P. Bénilan and H. Brezis, Nonlinear problems related to the Thomas-Fermi equation,, Dedicated to Philippe Bénilan, 3 (2003), 673.
|
[4] |
L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right hand side measures,, Comm. Partial Differential Equations, 17 (1992), 641.
|
[5] |
L. Boccardo, T. Gallouët and L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 539.
|
[6] |
H. Brezis and F. Browder, A property of Sobolev spaces,, Comm. Partial Differential Equations, 4 (1979), 1077.
|
[7] |
H. Brezis, M. Marcus and A. C. Ponce, Nonlinear elliptic equations with measures revisited,, in, 163 (2007), 55.
|
[8] |
H. Brezis and W. A. Strauss, Semi-linear second-order elliptic equations in $L^1$,, J. Math. Soc. Japan, 25 (1973), 565.
doi: 10.2969/jmsj/02540565. |
[9] |
A. Canino and M. Degiovanni, A variational approach to a class of singular semilinear elliptic equations,, J. Convex Anal., 11 (2004), 147.
|
[10] |
K.-C. Chang, "Infinite-Dimensional Morse Theory and Multiple Solution Problems,", Progress in Nonlinear Differential Equations and their Applications, 6 (1993).
|
[11] |
G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 741.
|
[12] |
E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari,, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3), 3 (1957), 25.
|
[13] |
M. Degiovanni and M. Marzocchi, On the Euler-Lagrange equation for functionals of the calculus of variations without upper growth conditions,, SIAM J. Control Optim., 48 (2009), 2857.
doi: 10.1137/090747968. |
[14] |
A. Ferrero and C. Saccon, Existence and multiplicity results for semilinear equations with measure data,, Topol. Methods Nonlinear Anal., 28 (2006), 285.
|
[15] |
A. Ferrero and C. Saccon, Existence and multiplicity results for semilinear elliptic equations with measure data and jumping nonlinearities,, Topol. Methods Nonlinear Anal., 30 (2007), 37.
|
[16] |
A. Ferrero and C. Saccon, Multiplicity results for a class of asymptotically linear elliptic problems with resonance and applications to problems with measure data,, Adv. Nonlinear Stud., 10 (2010), 433.
|
[17] |
T. Gallouët and J.-M. Morel, Resolution of a semilinear equation in $L^1$,, Proc. Roy. Soc. Edinburgh Sect. A, 96 (1984), 275.
|
[18] |
T. Gallouët and J.-M. Morel, Corrigenda: "Resolution of a semilinear equation in $L^1$,", Proc. Roy. Soc. Edinburgh Sect. A, 99 (1985). Google Scholar |
[19] |
J. Moser, A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations,, Comm. Pure Appl. Math., 13 (1960), 457.
doi: 10.1002/cpa.3160130308. |
[20] |
J. Moser, On Harnack's theorem for elliptic differential equations,, Comm. Pure Appl. Math., 14 (1961), 577.
doi: 10.1002/cpa.3160140329. |
[21] |
J. Nash, Continuity of solutions of parabolic and elliptic equations,, Amer. J. Math., 80 (1958), 931.
doi: 10.2307/2372841. |
[22] |
L. Orsina, Solvability of linear and semilinear eigenvalue problems with $L\^1$ data,, Rend. Sem. Mat. Univ. Padova, 90 (1993), 207.
|
[23] |
L. Orsina and A. Ponce, Semilinear elliptic equations and systems with diffuse measures,, J. Evol. Equ., 8 (2008), 781.
doi: 10.1007/s00028-008-0446-32. |
[24] |
G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus,, Ann. Inst. Fourier (Grenoble), 15 (1965), 189.
doi: 10.5802/aif.204. |
[25] |
G. Stampacchia, "Équations Elliptiques du Second Ordre à Coefficients Discontinus,", Séminaire de Mathématiques Supérieures, 16 (1966).
|
[26] |
A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 77.
|
[27] |
N. S. Trudinger and X.-J. Wang, Quasilinear elliptic equations with signed measure data,, Discrete Contin. Dyn. Syst., 23 (2009), 477.
doi: 10.3934/dcds.2009.23.477. |
show all references
References:
[1] |
P. Baras and M. Pierre, Singularités éliminables pour des équations semi-linéaires,, Ann. Inst. Fourier (Grenoble), 34 (1984), 185.
doi: 10.5802/aif.956. |
[2] |
P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vázquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22 (1995), 241. Google Scholar |
[3] |
P. Bénilan and H. Brezis, Nonlinear problems related to the Thomas-Fermi equation,, Dedicated to Philippe Bénilan, 3 (2003), 673.
|
[4] |
L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right hand side measures,, Comm. Partial Differential Equations, 17 (1992), 641.
|
[5] |
L. Boccardo, T. Gallouët and L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 539.
|
[6] |
H. Brezis and F. Browder, A property of Sobolev spaces,, Comm. Partial Differential Equations, 4 (1979), 1077.
|
[7] |
H. Brezis, M. Marcus and A. C. Ponce, Nonlinear elliptic equations with measures revisited,, in, 163 (2007), 55.
|
[8] |
H. Brezis and W. A. Strauss, Semi-linear second-order elliptic equations in $L^1$,, J. Math. Soc. Japan, 25 (1973), 565.
doi: 10.2969/jmsj/02540565. |
[9] |
A. Canino and M. Degiovanni, A variational approach to a class of singular semilinear elliptic equations,, J. Convex Anal., 11 (2004), 147.
|
[10] |
K.-C. Chang, "Infinite-Dimensional Morse Theory and Multiple Solution Problems,", Progress in Nonlinear Differential Equations and their Applications, 6 (1993).
|
[11] |
G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 741.
|
[12] |
E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari,, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3), 3 (1957), 25.
|
[13] |
M. Degiovanni and M. Marzocchi, On the Euler-Lagrange equation for functionals of the calculus of variations without upper growth conditions,, SIAM J. Control Optim., 48 (2009), 2857.
doi: 10.1137/090747968. |
[14] |
A. Ferrero and C. Saccon, Existence and multiplicity results for semilinear equations with measure data,, Topol. Methods Nonlinear Anal., 28 (2006), 285.
|
[15] |
A. Ferrero and C. Saccon, Existence and multiplicity results for semilinear elliptic equations with measure data and jumping nonlinearities,, Topol. Methods Nonlinear Anal., 30 (2007), 37.
|
[16] |
A. Ferrero and C. Saccon, Multiplicity results for a class of asymptotically linear elliptic problems with resonance and applications to problems with measure data,, Adv. Nonlinear Stud., 10 (2010), 433.
|
[17] |
T. Gallouët and J.-M. Morel, Resolution of a semilinear equation in $L^1$,, Proc. Roy. Soc. Edinburgh Sect. A, 96 (1984), 275.
|
[18] |
T. Gallouët and J.-M. Morel, Corrigenda: "Resolution of a semilinear equation in $L^1$,", Proc. Roy. Soc. Edinburgh Sect. A, 99 (1985). Google Scholar |
[19] |
J. Moser, A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations,, Comm. Pure Appl. Math., 13 (1960), 457.
doi: 10.1002/cpa.3160130308. |
[20] |
J. Moser, On Harnack's theorem for elliptic differential equations,, Comm. Pure Appl. Math., 14 (1961), 577.
doi: 10.1002/cpa.3160140329. |
[21] |
J. Nash, Continuity of solutions of parabolic and elliptic equations,, Amer. J. Math., 80 (1958), 931.
doi: 10.2307/2372841. |
[22] |
L. Orsina, Solvability of linear and semilinear eigenvalue problems with $L\^1$ data,, Rend. Sem. Mat. Univ. Padova, 90 (1993), 207.
|
[23] |
L. Orsina and A. Ponce, Semilinear elliptic equations and systems with diffuse measures,, J. Evol. Equ., 8 (2008), 781.
doi: 10.1007/s00028-008-0446-32. |
[24] |
G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus,, Ann. Inst. Fourier (Grenoble), 15 (1965), 189.
doi: 10.5802/aif.204. |
[25] |
G. Stampacchia, "Équations Elliptiques du Second Ordre à Coefficients Discontinus,", Séminaire de Mathématiques Supérieures, 16 (1966).
|
[26] |
A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 77.
|
[27] |
N. S. Trudinger and X.-J. Wang, Quasilinear elliptic equations with signed measure data,, Discrete Contin. Dyn. Syst., 23 (2009), 477.
doi: 10.3934/dcds.2009.23.477. |
[1] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[2] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[3] |
Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227 |
[4] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[5] |
Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365 |
[6] |
Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026 |
[7] |
Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286 |
[8] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[9] |
Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282 |
[10] |
Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021002 |
[11] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[12] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
[13] |
Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126 |
[14] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[15] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[16] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[17] |
Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033 |
[18] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
[19] |
Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136 |
[20] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020404 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]