December  2011, 31(4): 1233-1248. doi: 10.3934/dcds.2011.31.1233

A variational approach to semilinear elliptic equations with measure data

1. 

Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41 - 25121 Brescia, Italy

2. 

Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, Via Cozzi 53 - 20125 Milano, Italy

Received  October 2010 Revised  December 2010 Published  September 2011

We describe a direct variational approach to a class of semilinear elliptic equations with measure data. Using a typical variational argument, we show the existence of multiple solutions.
Citation: Marco Degiovanni, Michele Scaglia. A variational approach to semilinear elliptic equations with measure data. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1233-1248. doi: 10.3934/dcds.2011.31.1233
References:
[1]

P. Baras and M. Pierre, Singularités éliminables pour des équations semi-linéaires,, Ann. Inst. Fourier (Grenoble), 34 (1984), 185.  doi: 10.5802/aif.956.  Google Scholar

[2]

P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vázquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22 (1995), 241.   Google Scholar

[3]

P. Bénilan and H. Brezis, Nonlinear problems related to the Thomas-Fermi equation,, Dedicated to Philippe Bénilan, 3 (2003), 673.   Google Scholar

[4]

L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right hand side measures,, Comm. Partial Differential Equations, 17 (1992), 641.   Google Scholar

[5]

L. Boccardo, T. Gallouët and L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 539.   Google Scholar

[6]

H. Brezis and F. Browder, A property of Sobolev spaces,, Comm. Partial Differential Equations, 4 (1979), 1077.   Google Scholar

[7]

H. Brezis, M. Marcus and A. C. Ponce, Nonlinear elliptic equations with measures revisited,, in, 163 (2007), 55.   Google Scholar

[8]

H. Brezis and W. A. Strauss, Semi-linear second-order elliptic equations in $L^1$,, J. Math. Soc. Japan, 25 (1973), 565.  doi: 10.2969/jmsj/02540565.  Google Scholar

[9]

A. Canino and M. Degiovanni, A variational approach to a class of singular semilinear elliptic equations,, J. Convex Anal., 11 (2004), 147.   Google Scholar

[10]

K.-C. Chang, "Infinite-Dimensional Morse Theory and Multiple Solution Problems,", Progress in Nonlinear Differential Equations and their Applications, 6 (1993).   Google Scholar

[11]

G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 741.   Google Scholar

[12]

E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari,, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3), 3 (1957), 25.   Google Scholar

[13]

M. Degiovanni and M. Marzocchi, On the Euler-Lagrange equation for functionals of the calculus of variations without upper growth conditions,, SIAM J. Control Optim., 48 (2009), 2857.  doi: 10.1137/090747968.  Google Scholar

[14]

A. Ferrero and C. Saccon, Existence and multiplicity results for semilinear equations with measure data,, Topol. Methods Nonlinear Anal., 28 (2006), 285.   Google Scholar

[15]

A. Ferrero and C. Saccon, Existence and multiplicity results for semilinear elliptic equations with measure data and jumping nonlinearities,, Topol. Methods Nonlinear Anal., 30 (2007), 37.   Google Scholar

[16]

A. Ferrero and C. Saccon, Multiplicity results for a class of asymptotically linear elliptic problems with resonance and applications to problems with measure data,, Adv. Nonlinear Stud., 10 (2010), 433.   Google Scholar

[17]

T. Gallouët and J.-M. Morel, Resolution of a semilinear equation in $L^1$,, Proc. Roy. Soc. Edinburgh Sect. A, 96 (1984), 275.   Google Scholar

[18]

T. Gallouët and J.-M. Morel, Corrigenda: "Resolution of a semilinear equation in $L^1$,", Proc. Roy. Soc. Edinburgh Sect. A, 99 (1985).   Google Scholar

[19]

J. Moser, A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations,, Comm. Pure Appl. Math., 13 (1960), 457.  doi: 10.1002/cpa.3160130308.  Google Scholar

[20]

J. Moser, On Harnack's theorem for elliptic differential equations,, Comm. Pure Appl. Math., 14 (1961), 577.  doi: 10.1002/cpa.3160140329.  Google Scholar

[21]

J. Nash, Continuity of solutions of parabolic and elliptic equations,, Amer. J. Math., 80 (1958), 931.  doi: 10.2307/2372841.  Google Scholar

[22]

L. Orsina, Solvability of linear and semilinear eigenvalue problems with $L\^1$ data,, Rend. Sem. Mat. Univ. Padova, 90 (1993), 207.   Google Scholar

[23]

L. Orsina and A. Ponce, Semilinear elliptic equations and systems with diffuse measures,, J. Evol. Equ., 8 (2008), 781.  doi: 10.1007/s00028-008-0446-32.  Google Scholar

[24]

G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus,, Ann. Inst. Fourier (Grenoble), 15 (1965), 189.  doi: 10.5802/aif.204.  Google Scholar

[25]

G. Stampacchia, "Équations Elliptiques du Second Ordre à Coefficients Discontinus,", Séminaire de Mathématiques Supérieures, 16 (1966).   Google Scholar

[26]

A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 77.   Google Scholar

[27]

N. S. Trudinger and X.-J. Wang, Quasilinear elliptic equations with signed measure data,, Discrete Contin. Dyn. Syst., 23 (2009), 477.  doi: 10.3934/dcds.2009.23.477.  Google Scholar

show all references

References:
[1]

P. Baras and M. Pierre, Singularités éliminables pour des équations semi-linéaires,, Ann. Inst. Fourier (Grenoble), 34 (1984), 185.  doi: 10.5802/aif.956.  Google Scholar

[2]

P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vázquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22 (1995), 241.   Google Scholar

[3]

P. Bénilan and H. Brezis, Nonlinear problems related to the Thomas-Fermi equation,, Dedicated to Philippe Bénilan, 3 (2003), 673.   Google Scholar

[4]

L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right hand side measures,, Comm. Partial Differential Equations, 17 (1992), 641.   Google Scholar

[5]

L. Boccardo, T. Gallouët and L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 539.   Google Scholar

[6]

H. Brezis and F. Browder, A property of Sobolev spaces,, Comm. Partial Differential Equations, 4 (1979), 1077.   Google Scholar

[7]

H. Brezis, M. Marcus and A. C. Ponce, Nonlinear elliptic equations with measures revisited,, in, 163 (2007), 55.   Google Scholar

[8]

H. Brezis and W. A. Strauss, Semi-linear second-order elliptic equations in $L^1$,, J. Math. Soc. Japan, 25 (1973), 565.  doi: 10.2969/jmsj/02540565.  Google Scholar

[9]

A. Canino and M. Degiovanni, A variational approach to a class of singular semilinear elliptic equations,, J. Convex Anal., 11 (2004), 147.   Google Scholar

[10]

K.-C. Chang, "Infinite-Dimensional Morse Theory and Multiple Solution Problems,", Progress in Nonlinear Differential Equations and their Applications, 6 (1993).   Google Scholar

[11]

G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 741.   Google Scholar

[12]

E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari,, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3), 3 (1957), 25.   Google Scholar

[13]

M. Degiovanni and M. Marzocchi, On the Euler-Lagrange equation for functionals of the calculus of variations without upper growth conditions,, SIAM J. Control Optim., 48 (2009), 2857.  doi: 10.1137/090747968.  Google Scholar

[14]

A. Ferrero and C. Saccon, Existence and multiplicity results for semilinear equations with measure data,, Topol. Methods Nonlinear Anal., 28 (2006), 285.   Google Scholar

[15]

A. Ferrero and C. Saccon, Existence and multiplicity results for semilinear elliptic equations with measure data and jumping nonlinearities,, Topol. Methods Nonlinear Anal., 30 (2007), 37.   Google Scholar

[16]

A. Ferrero and C. Saccon, Multiplicity results for a class of asymptotically linear elliptic problems with resonance and applications to problems with measure data,, Adv. Nonlinear Stud., 10 (2010), 433.   Google Scholar

[17]

T. Gallouët and J.-M. Morel, Resolution of a semilinear equation in $L^1$,, Proc. Roy. Soc. Edinburgh Sect. A, 96 (1984), 275.   Google Scholar

[18]

T. Gallouët and J.-M. Morel, Corrigenda: "Resolution of a semilinear equation in $L^1$,", Proc. Roy. Soc. Edinburgh Sect. A, 99 (1985).   Google Scholar

[19]

J. Moser, A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations,, Comm. Pure Appl. Math., 13 (1960), 457.  doi: 10.1002/cpa.3160130308.  Google Scholar

[20]

J. Moser, On Harnack's theorem for elliptic differential equations,, Comm. Pure Appl. Math., 14 (1961), 577.  doi: 10.1002/cpa.3160140329.  Google Scholar

[21]

J. Nash, Continuity of solutions of parabolic and elliptic equations,, Amer. J. Math., 80 (1958), 931.  doi: 10.2307/2372841.  Google Scholar

[22]

L. Orsina, Solvability of linear and semilinear eigenvalue problems with $L\^1$ data,, Rend. Sem. Mat. Univ. Padova, 90 (1993), 207.   Google Scholar

[23]

L. Orsina and A. Ponce, Semilinear elliptic equations and systems with diffuse measures,, J. Evol. Equ., 8 (2008), 781.  doi: 10.1007/s00028-008-0446-32.  Google Scholar

[24]

G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus,, Ann. Inst. Fourier (Grenoble), 15 (1965), 189.  doi: 10.5802/aif.204.  Google Scholar

[25]

G. Stampacchia, "Équations Elliptiques du Second Ordre à Coefficients Discontinus,", Séminaire de Mathématiques Supérieures, 16 (1966).   Google Scholar

[26]

A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 77.   Google Scholar

[27]

N. S. Trudinger and X.-J. Wang, Quasilinear elliptic equations with signed measure data,, Discrete Contin. Dyn. Syst., 23 (2009), 477.  doi: 10.3934/dcds.2009.23.477.  Google Scholar

[1]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[2]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[3]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[4]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[5]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[6]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[7]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[8]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[9]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282

[10]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[11]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[12]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[13]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[14]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[15]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[16]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[17]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[18]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[19]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[20]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020404

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]