December  2011, 31(4): 1273-1292. doi: 10.3934/dcds.2011.31.1273

Exhausters, coexhausters and converters in nonsmooth analysis

1. 

Saint Petersburg State University, 7-9, Universitetskaya nab., St.Petersburg, Russian Federation, Russian Federation

Received  March 2010 Revised  October 2010 Published  September 2011

Usually, positively homogeneous functions are studied by means of exhaustive families of upper and lower approximations and their duals - upper and lower exhausters. Upper exhausters are used to find minimizers while lower exhausters are employed to find maximizers. In the paper, some properties of the so-called conversion operator (which converts an upper exhauster into a lower one, and vice versa) are discussed. The notions of cycle of exhausters, minimal cycle of exhausters and equivalent exhausters are introduced. A conjecture is formulated claiming that in the case of polyhedral exhausters only 1-cycle minimal exhausters exist.
Citation: Vladimir F. Demyanov, Julia A. Ryabova. Exhausters, coexhausters and converters in nonsmooth analysis. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1273-1292. doi: 10.3934/dcds.2011.31.1273
References:
[1]

M. Castellani, A dual characterization for proper positively homogeneous functions,, Journal of Global Optimization, 16 (2000), 393.  doi: 10.1023/A:1008394516838.  Google Scholar

[2]

V. F. Demyanov, Exhausters of a positively homogeneous function,, Dedicated to the Memory of Professor Karl-Heinz Elster, 45 (1999), 13.  doi: 10.1080/02331939908844424.  Google Scholar

[3]

V. F. Demyanov, Exhausters and convexificators - new tools in nonsmooth analysis,, in, 43 (2000), 85.   Google Scholar

[4]

V. F. Demyanov and V. A. Roshchina, Optimality conditions in terms of upper and lower exhausters,, Optimization, 55 (2006), 525.  doi: 10.1080/02331930600815777.  Google Scholar

[5]

V. F. Demyanov and A. M. Rubinov, Elements of quasidifferential calculus,, in, (1982), 5.   Google Scholar

[6]

V. F. Demyanov and A. M. Rubinov, "Quasidifferential Calculus,", Springer - Optimization Software, (1986).   Google Scholar

[7]

V. F. Demyanov and A. M. Rubinov, "Constructive Nonsmooth Analysis,", Approximation and Optimization, 7 (1995).   Google Scholar

[8]

V. F. Demyanov and A. M. Rubinov, Exhaustive families of approximations revisited,, in, 55 (2001), 43.   Google Scholar

[9]

B. N. Pschenichnyi, "Convex Analysis and Extremal Problems,", Nauka, (1980).   Google Scholar

[10]

R. T. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970).   Google Scholar

[11]

A. Uderzo, Convex approximators, convexificators and exhausters: Applications to constrained extremum problems,, in, 43 (2000), 297.   Google Scholar

show all references

References:
[1]

M. Castellani, A dual characterization for proper positively homogeneous functions,, Journal of Global Optimization, 16 (2000), 393.  doi: 10.1023/A:1008394516838.  Google Scholar

[2]

V. F. Demyanov, Exhausters of a positively homogeneous function,, Dedicated to the Memory of Professor Karl-Heinz Elster, 45 (1999), 13.  doi: 10.1080/02331939908844424.  Google Scholar

[3]

V. F. Demyanov, Exhausters and convexificators - new tools in nonsmooth analysis,, in, 43 (2000), 85.   Google Scholar

[4]

V. F. Demyanov and V. A. Roshchina, Optimality conditions in terms of upper and lower exhausters,, Optimization, 55 (2006), 525.  doi: 10.1080/02331930600815777.  Google Scholar

[5]

V. F. Demyanov and A. M. Rubinov, Elements of quasidifferential calculus,, in, (1982), 5.   Google Scholar

[6]

V. F. Demyanov and A. M. Rubinov, "Quasidifferential Calculus,", Springer - Optimization Software, (1986).   Google Scholar

[7]

V. F. Demyanov and A. M. Rubinov, "Constructive Nonsmooth Analysis,", Approximation and Optimization, 7 (1995).   Google Scholar

[8]

V. F. Demyanov and A. M. Rubinov, Exhaustive families of approximations revisited,, in, 55 (2001), 43.   Google Scholar

[9]

B. N. Pschenichnyi, "Convex Analysis and Extremal Problems,", Nauka, (1980).   Google Scholar

[10]

R. T. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970).   Google Scholar

[11]

A. Uderzo, Convex approximators, convexificators and exhausters: Applications to constrained extremum problems,, in, 43 (2000), 297.   Google Scholar

[1]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[2]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[3]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[4]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[5]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[6]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[7]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[8]

Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281

[9]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[10]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[11]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[12]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[13]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[14]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[15]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[16]

Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097

[17]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[18]

Sarra Nouaoura, Radhouane Fekih-Salem, Nahla Abdellatif, Tewfik Sari. Mathematical analysis of a three-tiered food-web in the chemostat. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020369

[19]

Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems & Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067

[20]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]