December  2011, 31(4): 1293-1305. doi: 10.3934/dcds.2011.31.1293

Remarks on certain singular perturbations with ill-posed limit in shell theory and elasticity

1. 

IMT, Université Paul Sabatier, 118, route de Narbonne, Toulouse, 31062, France

2. 

Laboratoire de Modélisation en Mécanique, Université Pierre et Marie Curie 4, place Jussieu, Paris, 75252, France

Received  June 2010 Revised  October 2010 Published  September 2011

Some problems of elasticity and shell theory are considered. The common feature of these problems is the presence of a small parameter $\varepsilon$. If $\varepsilon>0$ the corresponding equations are elliptic and the boundary conditions satisfy the Shapiro - Lopatinsky condition. When $\varepsilon=0$, this condition is violated and the problem can be non-solvable in the distribution spaces. The rather difficult passing to the limit is studied using the related Cauchy problem for elliptic equations. This approach allows to show that the most important is the transition zone where the frequencies $|\xi|\asymp \log (\varepsilon^{-1})$.
Citation: Youri V. Egorov, Evariste Sanchez-Palencia. Remarks on certain singular perturbations with ill-posed limit in shell theory and elasticity. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1293-1305. doi: 10.3934/dcds.2011.31.1293
References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I.,, Comm. Pure. Applied Math., 12 (1959), 623.  doi: 10.1002/cpa.3160120405.  Google Scholar

[2]

F. Béchet, O. Millet and E. Sanchez-Palencia, Singular perturbations generating complexification phenomena in elliptic shells,, Comput. Mech., 43 (2008), 207.   Google Scholar

[3]

R. Courant and D. Hilbert, "Methods of Mathematical Physics. Vol. II: Partial Differential Equations,", Interscience Publishers, (1962).   Google Scholar

[4]

Yu. V. Egorov and V. A. Kondratév, The oblique derivative problem,, Matem. sbornik (N.S.), 78 (1969), 148.   Google Scholar

[5]

Yu. V. Egorov, N. Meunier and E. Sanchez-Palencia, Rigorous and heuristic treatment of certain sensitive singular perturbations,, Journal Math. Pures et Appliques (9), 88 (2007), 123.  doi: 10.1016/j.matpur.2007.04.010.  Google Scholar

[6]

Yu. V. Egorov, N. Meunier and E. Sanchez-Palencia, "Rigorous and Heuristic Treatment of Sensitive Singular Perturbations Arising in Elliptic Shells,", Around the research of V. Maz'ya, 12 (2010), 159.   Google Scholar

[7]

Yu. V. Egorov and M. A. Shubin, "Foundations of the Classical Theory of Partial Differential Equations," Reprint of the original English edition from the series Encyclopaedia of Mathematical Sciences,, Springer-Verlag, (1998).   Google Scholar

[8]

J. Hadamard, "Lectures on Cauchy's Problem for Linear Partial Differential Equations,", Dover, (1952).   Google Scholar

[9]

P. R. Popivanov and D. K. Palagachev, "The Degenerate Oblique Derivative Problem for Elliptic and Parabolic Equations," Mathematical Research, 93,, Akademie Verlag, (1997).   Google Scholar

[10]

L. Schwartz, "Théorie des Distributions,", Hermann, (1961).   Google Scholar

[11]

M. E. Taylor, "Pseudodifferential Operators,", Princeton Mathematical Series, 34 (1981).   Google Scholar

show all references

References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I.,, Comm. Pure. Applied Math., 12 (1959), 623.  doi: 10.1002/cpa.3160120405.  Google Scholar

[2]

F. Béchet, O. Millet and E. Sanchez-Palencia, Singular perturbations generating complexification phenomena in elliptic shells,, Comput. Mech., 43 (2008), 207.   Google Scholar

[3]

R. Courant and D. Hilbert, "Methods of Mathematical Physics. Vol. II: Partial Differential Equations,", Interscience Publishers, (1962).   Google Scholar

[4]

Yu. V. Egorov and V. A. Kondratév, The oblique derivative problem,, Matem. sbornik (N.S.), 78 (1969), 148.   Google Scholar

[5]

Yu. V. Egorov, N. Meunier and E. Sanchez-Palencia, Rigorous and heuristic treatment of certain sensitive singular perturbations,, Journal Math. Pures et Appliques (9), 88 (2007), 123.  doi: 10.1016/j.matpur.2007.04.010.  Google Scholar

[6]

Yu. V. Egorov, N. Meunier and E. Sanchez-Palencia, "Rigorous and Heuristic Treatment of Sensitive Singular Perturbations Arising in Elliptic Shells,", Around the research of V. Maz'ya, 12 (2010), 159.   Google Scholar

[7]

Yu. V. Egorov and M. A. Shubin, "Foundations of the Classical Theory of Partial Differential Equations," Reprint of the original English edition from the series Encyclopaedia of Mathematical Sciences,, Springer-Verlag, (1998).   Google Scholar

[8]

J. Hadamard, "Lectures on Cauchy's Problem for Linear Partial Differential Equations,", Dover, (1952).   Google Scholar

[9]

P. R. Popivanov and D. K. Palagachev, "The Degenerate Oblique Derivative Problem for Elliptic and Parabolic Equations," Mathematical Research, 93,, Akademie Verlag, (1997).   Google Scholar

[10]

L. Schwartz, "Théorie des Distributions,", Hermann, (1961).   Google Scholar

[11]

M. E. Taylor, "Pseudodifferential Operators,", Princeton Mathematical Series, 34 (1981).   Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[5]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[6]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[7]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[8]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[9]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[10]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[11]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[12]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[13]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[14]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[15]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[16]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[17]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[18]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[19]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[20]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]