December  2011, 31(4): 1325-1346. doi: 10.3934/dcds.2011.31.1325

Fine properties of minimizers of mechanical Lagrangians with Sobolev potentials

1. 

University of Texas at Austin, Department of Mathematics, 2515 Speedway Stop C1200, Austin, TX 78712-1202, United States

2. 

Université Paris-Dauphine, CEREMADE UMR CNRS 7534, Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France

Received  November 2009 Revised  August 2010 Published  September 2011

In this paper we study the properties of curves minimizing mechanical Lagrangianwhere the potential is Sobolev. Since a Sobolev functionis only defined almost everywhere, no pointwise results can be obtained in this framework,and our point of view is shifted from single curves to measures in the space of paths.This study is motived by the goal of understanding the properties ofvariational solutions to the incompressible Euler equations.
Citation: Alessio Figalli, Vito Mandorino. Fine properties of minimizers of mechanical Lagrangians with Sobolev potentials. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1325-1346. doi: 10.3934/dcds.2011.31.1325
References:
[1]

L. Ambrosio and A. Figalli, Geodesics in the space of measure-preserving maps and plans, Arch. Ration. Mech. Anal., 194 (2009), 421-462. doi: 10.1007/s00205-008-0189-2.

[2]

L. Ambrosio and A. Figalli, On the regularity of the pressure field of Brenier's weak solutions to incompressible Euler equations, Calc. Var. Partial Differential Equations, 31 (2008), 497-509.

[3]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems," Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000.

[4]

V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits (French), Ann. Inst. Fourier (Grenoble), 16 (1966), 319-361. doi: 10.5802/aif.233.

[5]

Y. Brenier, The least action principle and the related concept of generalized flows for incompressible perfect fluids, J. Amer. Mat. Soc., 2 (1989), 225-255. doi: 10.1090/S0894-0347-1989-0969419-8.

[6]

P. Cannarsa and C. Sinestrari, "Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control," Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser Boston, Inc., Boston, MA, 2004.

[7]

C. Dellacherie and P.-A. Meyer, "Probabilities and Potential," North-Holland Mathematics Studies, 29, North-Holland Publishing Co., Amsterdam-New York, 1978.

[8]

D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Annals of Math. (2), 92 (1970), 102-163. doi: 10.2307/1970699.

[9]

P. Mattila, "Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability," Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge, 1995.

[10]

A. I. Shnirel'man, The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid (Russian), Mat. Sb. (N.S.), 128 (1985), 82-109.

[11]

A. I. Shnirel'man, Generalized fluid flows, their approximation and applications, Geom. Funct. Anal., 4 (1994), 586-620. doi: 10.1007/BF01896409.

show all references

References:
[1]

L. Ambrosio and A. Figalli, Geodesics in the space of measure-preserving maps and plans, Arch. Ration. Mech. Anal., 194 (2009), 421-462. doi: 10.1007/s00205-008-0189-2.

[2]

L. Ambrosio and A. Figalli, On the regularity of the pressure field of Brenier's weak solutions to incompressible Euler equations, Calc. Var. Partial Differential Equations, 31 (2008), 497-509.

[3]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems," Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000.

[4]

V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits (French), Ann. Inst. Fourier (Grenoble), 16 (1966), 319-361. doi: 10.5802/aif.233.

[5]

Y. Brenier, The least action principle and the related concept of generalized flows for incompressible perfect fluids, J. Amer. Mat. Soc., 2 (1989), 225-255. doi: 10.1090/S0894-0347-1989-0969419-8.

[6]

P. Cannarsa and C. Sinestrari, "Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control," Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser Boston, Inc., Boston, MA, 2004.

[7]

C. Dellacherie and P.-A. Meyer, "Probabilities and Potential," North-Holland Mathematics Studies, 29, North-Holland Publishing Co., Amsterdam-New York, 1978.

[8]

D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Annals of Math. (2), 92 (1970), 102-163. doi: 10.2307/1970699.

[9]

P. Mattila, "Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability," Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge, 1995.

[10]

A. I. Shnirel'man, The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid (Russian), Mat. Sb. (N.S.), 128 (1985), 82-109.

[11]

A. I. Shnirel'man, Generalized fluid flows, their approximation and applications, Geom. Funct. Anal., 4 (1994), 586-620. doi: 10.1007/BF01896409.

[1]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[2]

Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511

[3]

Menita Carozza, Jan Kristensen, Antonia Passarelli di Napoli. On the validity of the Euler-Lagrange system. Communications on Pure and Applied Analysis, 2015, 14 (1) : 51-62. doi: 10.3934/cpaa.2015.14.51

[4]

Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449

[5]

R.M. Brown, L.D. Gauthier. Inverse boundary value problems for polyharmonic operators with non-smooth coefficients. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022006

[6]

Jianhua Huang, Wenxian Shen. Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 855-882. doi: 10.3934/dcds.2009.24.855

[7]

Paul Glendinning. Non-smooth pitchfork bifurcations. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 457-464. doi: 10.3934/dcdsb.2004.4.457

[8]

Kaizhi Wang. Action minimizing stochastic invariant measures for a class of Lagrangian systems. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1211-1223. doi: 10.3934/cpaa.2008.7.1211

[9]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[10]

Yuan Xu, Xin Jin, Saiwei Wang, Yang Tang. Optimal synchronization control of multiple euler-lagrange systems via event-triggered reinforcement learning. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1495-1518. doi: 10.3934/dcdss.2020377

[11]

Luis Bayón, Jose Maria Grau, Maria del Mar Ruiz, Pedro Maria Suárez. A hydrothermal problem with non-smooth Lagrangian. Journal of Industrial and Management Optimization, 2014, 10 (3) : 761-776. doi: 10.3934/jimo.2014.10.761

[12]

Roberto Triggiani. Sharp regularity theory of second order hyperbolic equations with Neumann boundary control non-smooth in space. Evolution Equations and Control Theory, 2016, 5 (4) : 489-514. doi: 10.3934/eect.2016016

[13]

Ciprian G. Gal, Mahamadi Warma. Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1279-1319. doi: 10.3934/dcds.2016.36.1279

[14]

Yin Yang, Sujuan Kang, Vasiliy I. Vasil'ev. The Jacobi spectral collocation method for fractional integro-differential equations with non-smooth solutions. Electronic Research Archive, 2020, 28 (3) : 1161-1189. doi: 10.3934/era.2020064

[15]

Giuseppe Tomassetti. Smooth and non-smooth regularizations of the nonlinear diffusion equation. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1519-1537. doi: 10.3934/dcdss.2017078

[16]

Nurullah Yilmaz, Ahmet Sahiner. On a new smoothing technique for non-smooth, non-convex optimization. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 317-330. doi: 10.3934/naco.2020004

[17]

Nicola Gigli, Sunra Mosconi. The Abresch-Gromoll inequality in a non-smooth setting. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1481-1509. doi: 10.3934/dcds.2014.34.1481

[18]

Hongwei Lou, Junjie Wen, Yashan Xu. Time optimal control problems for some non-smooth systems. Mathematical Control and Related Fields, 2014, 4 (3) : 289-314. doi: 10.3934/mcrf.2014.4.289

[19]

Yanni Xiao, Tingting Zhao, Sanyi Tang. Dynamics of an infectious diseases with media/psychology induced non-smooth incidence. Mathematical Biosciences & Engineering, 2013, 10 (2) : 445-461. doi: 10.3934/mbe.2013.10.445

[20]

Deepak Singh, Bilal Ahmad Dar, Do Sang Kim. Sufficiency and duality in non-smooth interval valued programming problems. Journal of Industrial and Management Optimization, 2019, 15 (2) : 647-665. doi: 10.3934/jimo.2018063

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (85)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]