December  2011, 31(4): 1325-1346. doi: 10.3934/dcds.2011.31.1325

Fine properties of minimizers of mechanical Lagrangians with Sobolev potentials

1. 

University of Texas at Austin, Department of Mathematics, 2515 Speedway Stop C1200, Austin, TX 78712-1202, United States

2. 

Université Paris-Dauphine, CEREMADE UMR CNRS 7534, Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France

Received  November 2009 Revised  August 2010 Published  September 2011

In this paper we study the properties of curves minimizing mechanical Lagrangian where the potential is Sobolev. Since a Sobolev function is only defined almost everywhere, no pointwise results can be obtained in this framework, and our point of view is shifted from single curves to measures in the space of paths. This study is motived by the goal of understanding the properties of variational solutions to the incompressible Euler equations.
Citation: Alessio Figalli, Vito Mandorino. Fine properties of minimizers of mechanical Lagrangians with Sobolev potentials. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1325-1346. doi: 10.3934/dcds.2011.31.1325
References:
[1]

L. Ambrosio and A. Figalli, Geodesics in the space of measure-preserving maps and plans,, Arch. Ration. Mech. Anal., 194 (2009), 421.  doi: 10.1007/s00205-008-0189-2.  Google Scholar

[2]

L. Ambrosio and A. Figalli, On the regularity of the pressure field of Brenier's weak solutions to incompressible Euler equations,, Calc. Var. Partial Differential Equations, 31 (2008), 497.   Google Scholar

[3]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,", Oxford Mathematical Monographs, (2000).   Google Scholar

[4]

V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits (French),, Ann. Inst. Fourier (Grenoble), 16 (1966), 319.  doi: 10.5802/aif.233.  Google Scholar

[5]

Y. Brenier, The least action principle and the related concept of generalized flows for incompressible perfect fluids,, J. Amer. Mat. Soc., 2 (1989), 225.  doi: 10.1090/S0894-0347-1989-0969419-8.  Google Scholar

[6]

P. Cannarsa and C. Sinestrari, "Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control," Progress in Nonlinear Differential Equations and their Applications, 58,, Birkhäuser Boston, (2004).   Google Scholar

[7]

C. Dellacherie and P.-A. Meyer, "Probabilities and Potential,", North-Holland Mathematics Studies, 29 (1978).   Google Scholar

[8]

D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,, Annals of Math. (2), 92 (1970), 102.  doi: 10.2307/1970699.  Google Scholar

[9]

P. Mattila, "Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability," Cambridge Studies in Advanced Mathematics, 44,, Cambridge University Press, (1995).   Google Scholar

[10]

A. I. Shnirel'man, The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid (Russian),, Mat. Sb. (N.S.), 128 (1985), 82.   Google Scholar

[11]

A. I. Shnirel'man, Generalized fluid flows, their approximation and applications,, Geom. Funct. Anal., 4 (1994), 586.  doi: 10.1007/BF01896409.  Google Scholar

show all references

References:
[1]

L. Ambrosio and A. Figalli, Geodesics in the space of measure-preserving maps and plans,, Arch. Ration. Mech. Anal., 194 (2009), 421.  doi: 10.1007/s00205-008-0189-2.  Google Scholar

[2]

L. Ambrosio and A. Figalli, On the regularity of the pressure field of Brenier's weak solutions to incompressible Euler equations,, Calc. Var. Partial Differential Equations, 31 (2008), 497.   Google Scholar

[3]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,", Oxford Mathematical Monographs, (2000).   Google Scholar

[4]

V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits (French),, Ann. Inst. Fourier (Grenoble), 16 (1966), 319.  doi: 10.5802/aif.233.  Google Scholar

[5]

Y. Brenier, The least action principle and the related concept of generalized flows for incompressible perfect fluids,, J. Amer. Mat. Soc., 2 (1989), 225.  doi: 10.1090/S0894-0347-1989-0969419-8.  Google Scholar

[6]

P. Cannarsa and C. Sinestrari, "Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control," Progress in Nonlinear Differential Equations and their Applications, 58,, Birkhäuser Boston, (2004).   Google Scholar

[7]

C. Dellacherie and P.-A. Meyer, "Probabilities and Potential,", North-Holland Mathematics Studies, 29 (1978).   Google Scholar

[8]

D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,, Annals of Math. (2), 92 (1970), 102.  doi: 10.2307/1970699.  Google Scholar

[9]

P. Mattila, "Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability," Cambridge Studies in Advanced Mathematics, 44,, Cambridge University Press, (1995).   Google Scholar

[10]

A. I. Shnirel'man, The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid (Russian),, Mat. Sb. (N.S.), 128 (1985), 82.   Google Scholar

[11]

A. I. Shnirel'man, Generalized fluid flows, their approximation and applications,, Geom. Funct. Anal., 4 (1994), 586.  doi: 10.1007/BF01896409.  Google Scholar

[1]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[2]

Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511

[3]

Menita Carozza, Jan Kristensen, Antonia Passarelli di Napoli. On the validity of the Euler-Lagrange system. Communications on Pure & Applied Analysis, 2015, 14 (1) : 51-62. doi: 10.3934/cpaa.2015.14.51

[4]

Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449

[5]

Jianhua Huang, Wenxian Shen. Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 855-882. doi: 10.3934/dcds.2009.24.855

[6]

Paul Glendinning. Non-smooth pitchfork bifurcations. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 457-464. doi: 10.3934/dcdsb.2004.4.457

[7]

Kaizhi Wang. Action minimizing stochastic invariant measures for a class of Lagrangian systems. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1211-1223. doi: 10.3934/cpaa.2008.7.1211

[8]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[9]

Luis Bayón, Jose Maria Grau, Maria del Mar Ruiz, Pedro Maria Suárez. A hydrothermal problem with non-smooth Lagrangian. Journal of Industrial & Management Optimization, 2014, 10 (3) : 761-776. doi: 10.3934/jimo.2014.10.761

[10]

Roberto Triggiani. Sharp regularity theory of second order hyperbolic equations with Neumann boundary control non-smooth in space. Evolution Equations & Control Theory, 2016, 5 (4) : 489-514. doi: 10.3934/eect.2016016

[11]

Ciprian G. Gal, Mahamadi Warma. Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1279-1319. doi: 10.3934/dcds.2016.36.1279

[12]

Giuseppe Tomassetti. Smooth and non-smooth regularizations of the nonlinear diffusion equation. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1519-1537. doi: 10.3934/dcdss.2017078

[13]

Hongwei Lou, Junjie Wen, Yashan Xu. Time optimal control problems for some non-smooth systems. Mathematical Control & Related Fields, 2014, 4 (3) : 289-314. doi: 10.3934/mcrf.2014.4.289

[14]

Yanni Xiao, Tingting Zhao, Sanyi Tang. Dynamics of an infectious diseases with media/psychology induced non-smooth incidence. Mathematical Biosciences & Engineering, 2013, 10 (2) : 445-461. doi: 10.3934/mbe.2013.10.445

[15]

Nicola Gigli, Sunra Mosconi. The Abresch-Gromoll inequality in a non-smooth setting. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1481-1509. doi: 10.3934/dcds.2014.34.1481

[16]

Constantin Christof, Christian Meyer, Stephan Walther, Christian Clason. Optimal control of a non-smooth semilinear elliptic equation. Mathematical Control & Related Fields, 2018, 8 (1) : 247-276. doi: 10.3934/mcrf.2018011

[17]

Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187

[18]

Michael Goldberg. Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 109-118. doi: 10.3934/dcds.2011.31.109

[19]

Deepak Singh, Bilal Ahmad Dar, Do Sang Kim. Sufficiency and duality in non-smooth interval valued programming problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 647-665. doi: 10.3934/jimo.2018063

[20]

Chao Zhang, Lihe Wang, Shulin Zhou, Yun-Ho Kim. Global gradient estimates for $p(x)$-Laplace equation in non-smooth domains. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2559-2587. doi: 10.3934/cpaa.2014.13.2559

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]