December  2011, 31(4): 1347-1363. doi: 10.3934/dcds.2011.31.1347

On linear and nonlinear elliptic boundary value problems in the plane with discontinuous coefficients

1. 

D.I.M.E.T., Department of Computer Science, Mathematics, Electronics and Transportations, “Mediterranea” University of Reggio Calabria, 89060 Reggio Calabria, Italy, Italy

Received  March 2010 Revised  September 2010 Published  September 2011

Global Hölder regularity of the gradient in Morrey spaces is established for planar elliptic discontinuous equations, estimating in an explicit way the Hölder exponent in terms of the eigenvalues of the operator. The result is proved for Dirichlet or normal derivative problems and for nonlinear operators.
Citation: Sofia Giuffrè, Giovanna Idone. On linear and nonlinear elliptic boundary value problems in the plane with discontinuous coefficients. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1347-1363. doi: 10.3934/dcds.2011.31.1347
References:
[1]

L. Bers and L. Nirenberg, "On Linear and Non-Linear Elliptic Boundary Value Problems in the Plane,", Atti del Convegno Internazionale sulle Equazioni lineari alle Derivate Parziali, (1954), 141.   Google Scholar

[2]

S. Campanato, Un risultato relativo ad equazioni ellittiche del secondo ordine di tipo non variazionale,, Ann. Scuola Norm. Sup. Pisa (3), 21 (1967), 701.   Google Scholar

[3]

S. Campanato, "Quaderni del Dottorato,", Scuola Normale Superiore, (1980).   Google Scholar

[4]

S. Campanato, A maximum principle for nonlinear elliptic systems: Boundary fundamental estimates,, Adv. Math., 66 (1987), 291.  doi: 10.1016/0001-8708(87)90037-5.  Google Scholar

[5]

S. Campanato, Equazioni ellittiche del II ordine espazi $\mathcalL$$^(2, \lambda)$,, Ann. Mat. Pura Appl., 69 (1965), 321.  doi: 10.1007/BF02414377.  Google Scholar

[6]

E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari,, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3), 3 (1957), 25.   Google Scholar

[7]

R. Finn and J. Serrin, On the Hölder continuity of quasi-conformal and elliptic mappings,, Trans. Amer. Math. Soc., 89 (1958), 1.   Google Scholar

[8]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).   Google Scholar

[9]

S. Giuffrè, Oblique derivative problem for nonlinear elliptic discontinuous operators in the plane with quadratic growth,, C. R. Acad. Sci. Paris Sér. I, 328 (1999), 859.   Google Scholar

[10]

S. Giuffrè, Global Hölder regularity for discontinuous elliptic equations in the plane,, Proc. Amer. Math. Soc., 132 (2004), 1333.  doi: 10.1090/S0002-9939-03-07348-9.  Google Scholar

[11]

S. Giuffrè, Strong solvability of boundary value contact problems,, Appl. Math. Optimization, 51 (2005), 361.  doi: 10.1007/s00245-004-0817-7.  Google Scholar

[12]

S. Giuffrè and G. Idone, Global regularity for solutions to Dirichlet problem for discontinuous elliptic systems with nonlinearity $q>1$ and with natural growth,, Journal of Global Optimization, 40 (2008), 99.   Google Scholar

[13]

E. Giusti, Sulla regolarità delle soluzioni di una classe di equazioni ellittiche,, Rend. Semin. Mat. Univ. Padova, 39 (1967), 362.   Google Scholar

[14]

P. Hartman, Hölder continuity and non-linear elliptic partial differential equations,, Duke Math. J., 25 (1957), 57.  doi: 10.1215/S0012-7094-58-02506-7.  Google Scholar

[15]

A. Maugeri, D. K. Palagachev and L. Softova, "Elliptic and Parabolic Equations with Discontinuous Coefficients,", Mathematical Research, 109 (2000).   Google Scholar

[16]

C. B. Morrey Jr., On the solutions of quasi-linear elliptic partial differential equations,, Trans. Amer. Math. Soc., 43 (1938), 126.  doi: 10.1090/S0002-9947-1938-1501936-8.  Google Scholar

[17]

L. Nirenberg, On nonlinear elliptic partial differential equations and Hölder continuity,, Comm. Pure Appl. Math., 6 (1953), 103.  doi: 10.1002/cpa.3160060105.  Google Scholar

[18]

D. K. Palagachev, Global strong solvability of Dirichlet problem for a class of nonlinear elliptic equations in the plane,, Matematiche (Catania), 48 (1993), 311.   Google Scholar

[19]

L. Softova, An integral estimate for the gradient for a class of nonlinear elliptic equations in the plane,, Z. Anal. Anwen, 17 (1998), 57.   Google Scholar

[20]

G. Talenti, Equazioni ellittiche in due variabili,, Matematiche (Catania), 21 (1966), 339.   Google Scholar

[21]

N. S. Trudinger, "Nonlinear Second Order Elliptic Equations,", Lecture Notes of Math. Inst. of Nankai Univ., (1986).   Google Scholar

show all references

References:
[1]

L. Bers and L. Nirenberg, "On Linear and Non-Linear Elliptic Boundary Value Problems in the Plane,", Atti del Convegno Internazionale sulle Equazioni lineari alle Derivate Parziali, (1954), 141.   Google Scholar

[2]

S. Campanato, Un risultato relativo ad equazioni ellittiche del secondo ordine di tipo non variazionale,, Ann. Scuola Norm. Sup. Pisa (3), 21 (1967), 701.   Google Scholar

[3]

S. Campanato, "Quaderni del Dottorato,", Scuola Normale Superiore, (1980).   Google Scholar

[4]

S. Campanato, A maximum principle for nonlinear elliptic systems: Boundary fundamental estimates,, Adv. Math., 66 (1987), 291.  doi: 10.1016/0001-8708(87)90037-5.  Google Scholar

[5]

S. Campanato, Equazioni ellittiche del II ordine espazi $\mathcalL$$^(2, \lambda)$,, Ann. Mat. Pura Appl., 69 (1965), 321.  doi: 10.1007/BF02414377.  Google Scholar

[6]

E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari,, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3), 3 (1957), 25.   Google Scholar

[7]

R. Finn and J. Serrin, On the Hölder continuity of quasi-conformal and elliptic mappings,, Trans. Amer. Math. Soc., 89 (1958), 1.   Google Scholar

[8]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).   Google Scholar

[9]

S. Giuffrè, Oblique derivative problem for nonlinear elliptic discontinuous operators in the plane with quadratic growth,, C. R. Acad. Sci. Paris Sér. I, 328 (1999), 859.   Google Scholar

[10]

S. Giuffrè, Global Hölder regularity for discontinuous elliptic equations in the plane,, Proc. Amer. Math. Soc., 132 (2004), 1333.  doi: 10.1090/S0002-9939-03-07348-9.  Google Scholar

[11]

S. Giuffrè, Strong solvability of boundary value contact problems,, Appl. Math. Optimization, 51 (2005), 361.  doi: 10.1007/s00245-004-0817-7.  Google Scholar

[12]

S. Giuffrè and G. Idone, Global regularity for solutions to Dirichlet problem for discontinuous elliptic systems with nonlinearity $q>1$ and with natural growth,, Journal of Global Optimization, 40 (2008), 99.   Google Scholar

[13]

E. Giusti, Sulla regolarità delle soluzioni di una classe di equazioni ellittiche,, Rend. Semin. Mat. Univ. Padova, 39 (1967), 362.   Google Scholar

[14]

P. Hartman, Hölder continuity and non-linear elliptic partial differential equations,, Duke Math. J., 25 (1957), 57.  doi: 10.1215/S0012-7094-58-02506-7.  Google Scholar

[15]

A. Maugeri, D. K. Palagachev and L. Softova, "Elliptic and Parabolic Equations with Discontinuous Coefficients,", Mathematical Research, 109 (2000).   Google Scholar

[16]

C. B. Morrey Jr., On the solutions of quasi-linear elliptic partial differential equations,, Trans. Amer. Math. Soc., 43 (1938), 126.  doi: 10.1090/S0002-9947-1938-1501936-8.  Google Scholar

[17]

L. Nirenberg, On nonlinear elliptic partial differential equations and Hölder continuity,, Comm. Pure Appl. Math., 6 (1953), 103.  doi: 10.1002/cpa.3160060105.  Google Scholar

[18]

D. K. Palagachev, Global strong solvability of Dirichlet problem for a class of nonlinear elliptic equations in the plane,, Matematiche (Catania), 48 (1993), 311.   Google Scholar

[19]

L. Softova, An integral estimate for the gradient for a class of nonlinear elliptic equations in the plane,, Z. Anal. Anwen, 17 (1998), 57.   Google Scholar

[20]

G. Talenti, Equazioni ellittiche in due variabili,, Matematiche (Catania), 21 (1966), 339.   Google Scholar

[21]

N. S. Trudinger, "Nonlinear Second Order Elliptic Equations,", Lecture Notes of Math. Inst. of Nankai Univ., (1986).   Google Scholar

[1]

Luigi C. Berselli, Carlo R. Grisanti. On the regularity up to the boundary for certain nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 53-71. doi: 10.3934/dcdss.2016.9.53

[2]

Hugo Beirão da Veiga. Elliptic boundary value problems in spaces of continuous functions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 43-52. doi: 10.3934/dcdss.2016.9.43

[3]

Santiago Cano-Casanova. Coercivity of elliptic mixed boundary value problems in annulus of $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3819-3839. doi: 10.3934/dcds.2012.32.3819

[4]

Matthias Eller, Daniel Toundykov. Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems. Evolution Equations & Control Theory, 2012, 1 (2) : 271-296. doi: 10.3934/eect.2012.1.271

[5]

Mark I. Vishik, Sergey Zelik. Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2059-2093. doi: 10.3934/cpaa.2014.13.2059

[6]

Shujie Li, Zhitao Zhang. Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 489-493. doi: 10.3934/dcds.1999.5.489

[7]

Zongming Guo, Yunting Yu. Boundary value problems for a semilinear elliptic equation with singular nonlinearity. Communications on Pure & Applied Analysis, 2016, 15 (2) : 399-412. doi: 10.3934/cpaa.2016.15.399

[8]

Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881

[9]

Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54

[10]

Angelo Favini, Rabah Labbas, Stéphane Maingot, Maëlis Meisner. Boundary value problem for elliptic differential equations in non-commutative cases. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4967-4990. doi: 10.3934/dcds.2013.33.4967

[11]

Colin J. Cotter, Darryl D. Holm. Geodesic boundary value problems with symmetry. Journal of Geometric Mechanics, 2010, 2 (1) : 51-68. doi: 10.3934/jgm.2010.2.51

[12]

Hiroshi Watanabe. Solvability of boundary value problems for strongly degenerate parabolic equations with discontinuous coefficients. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 177-189. doi: 10.3934/dcdss.2014.7.177

[13]

Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure & Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521

[14]

Olha P. Kupenko, Rosanna Manzo. On optimal controls in coefficients for ill-posed non-Linear elliptic Dirichlet boundary value problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1363-1393. doi: 10.3934/dcdsb.2018155

[15]

Daniela De Silva, Fausto Ferrari, Sandro Salsa. On two phase free boundary problems governed by elliptic equations with distributed sources. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 673-693. doi: 10.3934/dcdss.2014.7.673

[16]

Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267

[17]

Laurence Halpern, Jeffrey Rauch. Hyperbolic boundary value problems with trihedral corners. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4403-4450. doi: 10.3934/dcds.2016.36.4403

[18]

Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760

[19]

J. R. L. Webb. Uniqueness of the principal eigenvalue in nonlocal boundary value problems. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 177-186. doi: 10.3934/dcdss.2008.1.177

[20]

Sergei Avdonin, Fritz Gesztesy, Konstantin A. Makarov. Spectral estimation and inverse initial boundary value problems. Inverse Problems & Imaging, 2010, 4 (1) : 1-9. doi: 10.3934/ipi.2010.4.1

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]