December  2011, 31(4): 1365-1381. doi: 10.3934/dcds.2011.31.1365

Radial solutions to energy supercritical wave equations in odd dimensions

1. 

Department of Mathematics, University of Chicago, Chicago, Illinois, 60637-1514, United States

2. 

Cergy Pontoise (UMR 8088) and IHES, France

Received  March 2009 Revised  April 2010 Published  September 2011

We establish pointwise decay bounds for radial, compact solutions of energy supercritical wave equations in odd dimensions. Applications are given.
Citation: Carlos E. Kenig, Frank Merle. Radial solutions to energy supercritical wave equations in odd dimensions. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1365-1381. doi: 10.3934/dcds.2011.31.1365
References:
[1]

H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations,, Amer. J. Math., 121 (1999), 131.  doi: 10.1353/ajm.1999.0001.  Google Scholar

[2]

A. Bulut, Maximizers for the Strichartz inequality for the wave equation,, preprint, ().   Google Scholar

[3]

A. Bulut, Global well-posedness and scattering for the defocusing energy-supercritical cubic nonlinear wave equation,, preprint, ().   Google Scholar

[4]

A. Bulut, M. Czubak, D. Li, N. Pavlovic and X. Zhang, Stability and unconditional uniqueness of solutions for energy critical wave equations in high dimensions,, preprint, ().   Google Scholar

[5]

L. Iskauriaza, G. Serëgin and V. Shverak, $L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness,, Uspekhi Mat. Nauk, 58 (2003), 3.   Google Scholar

[6]

I. Gallagher, G. Koch and F. Planchon, A profile decomposition approach to the $L^\infty_tL^3_x$ Navier-Stokes regularity criterion,, preprint, ().   Google Scholar

[7]

J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation,, J. Funct. Anal., 133 (1995), 50.  doi: 10.1006/jfan.1995.1119.  Google Scholar

[8]

C. Kenig, Global well-posedness and scattering for the energy critical focusing nonlinear Schrödinger and wave equations,, Lecture notes for a mini course given at, (2007).   Google Scholar

[9]

C. Kenig, The concentration-compactness/rigidity theorem method for critical dispersive and wave equations,, Lectures for a course given at CRM, (2008).   Google Scholar

[10]

C. Kenig, Recent developments on the global behavior to critical nonlinear dispersive equations,, Proceedings of the International Congress of Mathematicians 2010, 1 (2010), 326.   Google Scholar

[11]

C. Kenig and G. Koch, An alternative approach to regularity for the Navier-Stokes equation in a critical space,, to appear on Ann. Inst. H. Poincaré Anal. Non Linéaire, (2011).   Google Scholar

[12]

C. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case,, Invent. Math., 166 (2006), 645.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[13]

C. Kenig and F. Merle, Global well-posedness, scatering and blow-up for the energy-critical focusing non-linear wave equation,, Acta Math., 201 (2008), 147.  doi: 10.1007/s11511-008-0031-6.  Google Scholar

[14]

C. Kenig and F. Merle, Scattering for $\dot H^{1/2}$ bounded solutions to the cubic defocusing NLS in 3 dimensions,, Trans. Amer. Math. Soc., 362 (2010), 1937.  doi: 10.1090/S0002-9947-09-04722-9.  Google Scholar

[15]

C. Kenig and F. Merle, Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications,, to appear on Amer. J. Math., (2011).   Google Scholar

[16]

C. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle,, Comm. Pure Appl. Math., 46 (1993), 527.  doi: 10.1002/cpa.3160460405.  Google Scholar

[17]

R. Killip and M. Visan, The defocusing energy-supercritical nonlinear wave equation in three space dimensions,, preprint, ().   Google Scholar

[18]

R. Killip and M. Visan, The radial defocusing energy-supercritical nonlinear wave equation in all space dimensions,, preprint, ().   Google Scholar

[19]

F. Merle and L. Vega, Compactness at blow-up time for $L^2$ solutions of the critical nonlinear Schrödinger equation in 2D,, Internat. Math. Res. Notices, 1998 (): 399.  doi: 10.1155/S1073792898000270.  Google Scholar

[20]

C. S. Morawetz, Time decay for the nonlinear Klein-Gordon equations,, Proc. Roy. Soc. Ser. A, 306 (1968), 291.  doi: 10.1098/rspa.1968.0151.  Google Scholar

[21]

B. Perthame and L. Vega, Morrey-Campanato estimates for Helmholtz equations,, J. Funct. Anal., 164 (1999), 340.  doi: 10.1006/jfan.1999.3391.  Google Scholar

[22]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,", Princeton Mathematical Series, (1970).   Google Scholar

[23]

R. J. Taggart, Inhomogeneous Stichartz estimates,, Forum Math., 22 (2010), 825.  doi: 10.1515/FORUM.2010.044.  Google Scholar

show all references

References:
[1]

H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations,, Amer. J. Math., 121 (1999), 131.  doi: 10.1353/ajm.1999.0001.  Google Scholar

[2]

A. Bulut, Maximizers for the Strichartz inequality for the wave equation,, preprint, ().   Google Scholar

[3]

A. Bulut, Global well-posedness and scattering for the defocusing energy-supercritical cubic nonlinear wave equation,, preprint, ().   Google Scholar

[4]

A. Bulut, M. Czubak, D. Li, N. Pavlovic and X. Zhang, Stability and unconditional uniqueness of solutions for energy critical wave equations in high dimensions,, preprint, ().   Google Scholar

[5]

L. Iskauriaza, G. Serëgin and V. Shverak, $L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness,, Uspekhi Mat. Nauk, 58 (2003), 3.   Google Scholar

[6]

I. Gallagher, G. Koch and F. Planchon, A profile decomposition approach to the $L^\infty_tL^3_x$ Navier-Stokes regularity criterion,, preprint, ().   Google Scholar

[7]

J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation,, J. Funct. Anal., 133 (1995), 50.  doi: 10.1006/jfan.1995.1119.  Google Scholar

[8]

C. Kenig, Global well-posedness and scattering for the energy critical focusing nonlinear Schrödinger and wave equations,, Lecture notes for a mini course given at, (2007).   Google Scholar

[9]

C. Kenig, The concentration-compactness/rigidity theorem method for critical dispersive and wave equations,, Lectures for a course given at CRM, (2008).   Google Scholar

[10]

C. Kenig, Recent developments on the global behavior to critical nonlinear dispersive equations,, Proceedings of the International Congress of Mathematicians 2010, 1 (2010), 326.   Google Scholar

[11]

C. Kenig and G. Koch, An alternative approach to regularity for the Navier-Stokes equation in a critical space,, to appear on Ann. Inst. H. Poincaré Anal. Non Linéaire, (2011).   Google Scholar

[12]

C. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case,, Invent. Math., 166 (2006), 645.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[13]

C. Kenig and F. Merle, Global well-posedness, scatering and blow-up for the energy-critical focusing non-linear wave equation,, Acta Math., 201 (2008), 147.  doi: 10.1007/s11511-008-0031-6.  Google Scholar

[14]

C. Kenig and F. Merle, Scattering for $\dot H^{1/2}$ bounded solutions to the cubic defocusing NLS in 3 dimensions,, Trans. Amer. Math. Soc., 362 (2010), 1937.  doi: 10.1090/S0002-9947-09-04722-9.  Google Scholar

[15]

C. Kenig and F. Merle, Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications,, to appear on Amer. J. Math., (2011).   Google Scholar

[16]

C. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle,, Comm. Pure Appl. Math., 46 (1993), 527.  doi: 10.1002/cpa.3160460405.  Google Scholar

[17]

R. Killip and M. Visan, The defocusing energy-supercritical nonlinear wave equation in three space dimensions,, preprint, ().   Google Scholar

[18]

R. Killip and M. Visan, The radial defocusing energy-supercritical nonlinear wave equation in all space dimensions,, preprint, ().   Google Scholar

[19]

F. Merle and L. Vega, Compactness at blow-up time for $L^2$ solutions of the critical nonlinear Schrödinger equation in 2D,, Internat. Math. Res. Notices, 1998 (): 399.  doi: 10.1155/S1073792898000270.  Google Scholar

[20]

C. S. Morawetz, Time decay for the nonlinear Klein-Gordon equations,, Proc. Roy. Soc. Ser. A, 306 (1968), 291.  doi: 10.1098/rspa.1968.0151.  Google Scholar

[21]

B. Perthame and L. Vega, Morrey-Campanato estimates for Helmholtz equations,, J. Funct. Anal., 164 (1999), 340.  doi: 10.1006/jfan.1999.3391.  Google Scholar

[22]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,", Princeton Mathematical Series, (1970).   Google Scholar

[23]

R. J. Taggart, Inhomogeneous Stichartz estimates,, Forum Math., 22 (2010), 825.  doi: 10.1515/FORUM.2010.044.  Google Scholar

[1]

Hideo Kubo. On the critical decay and power for semilinear wave equtions in odd space dimensions. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 173-190. doi: 10.3934/dcds.1996.2.173

[2]

Thinh Tien Nguyen. Asymptotic limit and decay estimates for a class of dissipative linear hyperbolic systems in several dimensions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1651-1684. doi: 10.3934/dcds.2019073

[3]

Yongqin Liu, Weike Wang. The pointwise estimates of solutions for dissipative wave equation in multi-dimensions. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1013-1028. doi: 10.3934/dcds.2008.20.1013

[4]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[5]

Louis Tebou. Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Mathematical Control & Related Fields, 2012, 2 (1) : 45-60. doi: 10.3934/mcrf.2012.2.45

[6]

Marco Cappiello, Fabio Nicola. Sharp decay estimates and smoothness for solutions to nonlocal semilinear equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1869-1880. doi: 10.3934/dcds.2016.36.1869

[7]

Huijiang Zhao. Large time decay estimates of solutions of nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 69-114. doi: 10.3934/dcds.2002.8.69

[8]

Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086

[9]

Guillermo Reyes, Juan-Luis Vázquez. The inhomogeneous PME in several space dimensions. Existence and uniqueness of finite energy solutions. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1275-1294. doi: 10.3934/cpaa.2008.7.1275

[10]

Zhigang Wu, Weike Wang. Pointwise estimates of solutions for the Euler-Poisson equations with damping in multi-dimensions. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 1101-1117. doi: 10.3934/dcds.2010.26.1101

[11]

Gabriele Grillo, Matteo Muratori, Maria Michaela Porzio. Porous media equations with two weights: Smoothing and decay properties of energy solutions via Poincaré inequalities. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3599-3640. doi: 10.3934/dcds.2013.33.3599

[12]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

[13]

Abbes Benaissa, Abderrahmane Kasmi. Well-posedeness and energy decay of solutions to a bresse system with a boundary dissipation of fractional derivative type. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4361-4395. doi: 10.3934/dcdsb.2018168

[14]

Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032

[15]

Linghai Zhang. Decay estimates with sharp rates of global solutions of nonlinear systems of fluid dynamics equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2181-2200. doi: 10.3934/dcdss.2016091

[16]

Karen Yagdjian, Anahit Galstian. Fundamental solutions for wave equation in Robertson-Walker model of universe and $L^p-L^q$ -decay estimates. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 483-502. doi: 10.3934/dcdss.2009.2.483

[17]

Wuming Li, Xiaojun Liu, Quansen Jiu. The decay estimates of solutions for 1D compressible flows with density-dependent viscosity coefficients. Communications on Pure & Applied Analysis, 2013, 12 (2) : 647-661. doi: 10.3934/cpaa.2013.12.647

[18]

Takeshi Taniguchi. The existence and decay estimates of the solutions to $3$D stochastic Navier-Stokes equations with additive noise in an exterior domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4323-4341. doi: 10.3934/dcds.2014.34.4323

[19]

Xiaopeng Zhao. Space-time decay estimates of solutions to liquid crystal system in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2019, 18 (1) : 1-13. doi: 10.3934/cpaa.2019001

[20]

Changxing Miao, Jiqiang Zheng. Scattering theory for energy-supercritical Klein-Gordon equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2073-2094. doi: 10.3934/dcdss.2016085

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]