-
Previous Article
Solving strongly monotone variational and quasi-variational inequalities
- DCDS Home
- This Issue
-
Next Article
On linear and nonlinear elliptic boundary value problems in the plane with discontinuous coefficients
Radial solutions to energy supercritical wave equations in odd dimensions
1. | Department of Mathematics, University of Chicago, Chicago, Illinois, 60637-1514, United States |
2. | Cergy Pontoise (UMR 8088) and IHES, France |
References:
[1] |
H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999), 131-175.
doi: 10.1353/ajm.1999.0001. |
[2] |
A. Bulut, Maximizers for the Strichartz inequality for the wave equation, preprint, arXiv:0905.1678. |
[3] |
A. Bulut, Global well-posedness and scattering for the defocusing energy-supercritical cubic nonlinear wave equation, preprint, arXiv:1006.4168. |
[4] |
A. Bulut, M. Czubak, D. Li, N. Pavlovic and X. Zhang, Stability and unconditional uniqueness of solutions for energy critical wave equations in high dimensions, preprint, arXiv:0911.4534. |
[5] |
L. Iskauriaza, G. Serëgin and V. Shverak, $L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk, 58 (2003), 3-44; translation in Russian Math. Surveys, 58 (2003), 211-250. |
[6] |
I. Gallagher, G. Koch and F. Planchon, A profile decomposition approach to the $L^\infty_tL^3_x$ Navier-Stokes regularity criterion, preprint, arXiv:1012.0145. |
[7] |
J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., 133 (1995), 50-68.
doi: 10.1006/jfan.1995.1119. |
[8] |
C. Kenig, Global well-posedness and scattering for the energy critical focusing nonlinear Schrödinger and wave equations, Lecture notes for a mini course given at "Analyse des Equations aux Derivées Partielles," Evian-les-Bains, 2007. Available from: http://www.math.uchicago.edu/~cek. |
[9] |
C. Kenig, The concentration-compactness/rigidity theorem method for critical dispersive and wave equations, Lectures for a course given at CRM, Bellaterra, Spain, May 2008. Available from: http://www.math.uchicago.edu/~cek. |
[10] |
C. Kenig, Recent developments on the global behavior to critical nonlinear dispersive equations, Proceedings of the International Congress of Mathematicians 2010, 1 (2010), 326-338. |
[11] |
C. Kenig and G. Koch, An alternative approach to regularity for the Navier-Stokes equation in a critical space, to appear on Ann. Inst. H. Poincaré Anal. Non Linéaire, 2011. |
[12] |
C. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.
doi: 10.1007/s00222-006-0011-4. |
[13] |
C. Kenig and F. Merle, Global well-posedness, scatering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201 (2008), 147-212.
doi: 10.1007/s11511-008-0031-6. |
[14] |
C. Kenig and F. Merle, Scattering for $\dot H^{1/2}$ bounded solutions to the cubic defocusing NLS in 3 dimensions, Trans. Amer. Math. Soc., 362 (2010), 1937-1962.
doi: 10.1090/S0002-9947-09-04722-9. |
[15] |
C. Kenig and F. Merle, Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications, to appear on Amer. J. Math., 2011. |
[16] |
C. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405. |
[17] |
R. Killip and M. Visan, The defocusing energy-supercritical nonlinear wave equation in three space dimensions, preprint, arXiv:1001.1761. |
[18] |
R. Killip and M. Visan, The radial defocusing energy-supercritical nonlinear wave equation in all space dimensions, preprint, arXiv:1002.1756. |
[19] |
F. Merle and L. Vega, Compactness at blow-up time for $L^2$ solutions of the critical nonlinear Schrödinger equation in 2D, Internat. Math. Res. Notices, 1998, 399-425.
doi: 10.1155/S1073792898000270. |
[20] |
C. S. Morawetz, Time decay for the nonlinear Klein-Gordon equations, Proc. Roy. Soc. Ser. A, 306 (1968), 291-296.
doi: 10.1098/rspa.1968.0151. |
[21] |
B. Perthame and L. Vega, Morrey-Campanato estimates for Helmholtz equations, J. Funct. Anal., 164 (1999), 340-355.
doi: 10.1006/jfan.1999.3391. |
[22] |
E. M. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, 1970. |
[23] |
R. J. Taggart, Inhomogeneous Stichartz estimates, Forum Math., 22 (2010), 825-853.
doi: 10.1515/FORUM.2010.044. |
show all references
References:
[1] |
H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999), 131-175.
doi: 10.1353/ajm.1999.0001. |
[2] |
A. Bulut, Maximizers for the Strichartz inequality for the wave equation, preprint, arXiv:0905.1678. |
[3] |
A. Bulut, Global well-posedness and scattering for the defocusing energy-supercritical cubic nonlinear wave equation, preprint, arXiv:1006.4168. |
[4] |
A. Bulut, M. Czubak, D. Li, N. Pavlovic and X. Zhang, Stability and unconditional uniqueness of solutions for energy critical wave equations in high dimensions, preprint, arXiv:0911.4534. |
[5] |
L. Iskauriaza, G. Serëgin and V. Shverak, $L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk, 58 (2003), 3-44; translation in Russian Math. Surveys, 58 (2003), 211-250. |
[6] |
I. Gallagher, G. Koch and F. Planchon, A profile decomposition approach to the $L^\infty_tL^3_x$ Navier-Stokes regularity criterion, preprint, arXiv:1012.0145. |
[7] |
J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., 133 (1995), 50-68.
doi: 10.1006/jfan.1995.1119. |
[8] |
C. Kenig, Global well-posedness and scattering for the energy critical focusing nonlinear Schrödinger and wave equations, Lecture notes for a mini course given at "Analyse des Equations aux Derivées Partielles," Evian-les-Bains, 2007. Available from: http://www.math.uchicago.edu/~cek. |
[9] |
C. Kenig, The concentration-compactness/rigidity theorem method for critical dispersive and wave equations, Lectures for a course given at CRM, Bellaterra, Spain, May 2008. Available from: http://www.math.uchicago.edu/~cek. |
[10] |
C. Kenig, Recent developments on the global behavior to critical nonlinear dispersive equations, Proceedings of the International Congress of Mathematicians 2010, 1 (2010), 326-338. |
[11] |
C. Kenig and G. Koch, An alternative approach to regularity for the Navier-Stokes equation in a critical space, to appear on Ann. Inst. H. Poincaré Anal. Non Linéaire, 2011. |
[12] |
C. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.
doi: 10.1007/s00222-006-0011-4. |
[13] |
C. Kenig and F. Merle, Global well-posedness, scatering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201 (2008), 147-212.
doi: 10.1007/s11511-008-0031-6. |
[14] |
C. Kenig and F. Merle, Scattering for $\dot H^{1/2}$ bounded solutions to the cubic defocusing NLS in 3 dimensions, Trans. Amer. Math. Soc., 362 (2010), 1937-1962.
doi: 10.1090/S0002-9947-09-04722-9. |
[15] |
C. Kenig and F. Merle, Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications, to appear on Amer. J. Math., 2011. |
[16] |
C. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405. |
[17] |
R. Killip and M. Visan, The defocusing energy-supercritical nonlinear wave equation in three space dimensions, preprint, arXiv:1001.1761. |
[18] |
R. Killip and M. Visan, The radial defocusing energy-supercritical nonlinear wave equation in all space dimensions, preprint, arXiv:1002.1756. |
[19] |
F. Merle and L. Vega, Compactness at blow-up time for $L^2$ solutions of the critical nonlinear Schrödinger equation in 2D, Internat. Math. Res. Notices, 1998, 399-425.
doi: 10.1155/S1073792898000270. |
[20] |
C. S. Morawetz, Time decay for the nonlinear Klein-Gordon equations, Proc. Roy. Soc. Ser. A, 306 (1968), 291-296.
doi: 10.1098/rspa.1968.0151. |
[21] |
B. Perthame and L. Vega, Morrey-Campanato estimates for Helmholtz equations, J. Funct. Anal., 164 (1999), 340-355.
doi: 10.1006/jfan.1999.3391. |
[22] |
E. M. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, 1970. |
[23] |
R. J. Taggart, Inhomogeneous Stichartz estimates, Forum Math., 22 (2010), 825-853.
doi: 10.1515/FORUM.2010.044. |
[1] |
Hideo Kubo. On the critical decay and power for semilinear wave equtions in odd space dimensions. Discrete and Continuous Dynamical Systems, 1996, 2 (2) : 173-190. doi: 10.3934/dcds.1996.2.173 |
[2] |
Thinh Tien Nguyen. Asymptotic limit and decay estimates for a class of dissipative linear hyperbolic systems in several dimensions. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1651-1684. doi: 10.3934/dcds.2019073 |
[3] |
Yongqin Liu, Weike Wang. The pointwise estimates of solutions for dissipative wave equation in multi-dimensions. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1013-1028. doi: 10.3934/dcds.2008.20.1013 |
[4] |
Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations and Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37 |
[5] |
Louis Tebou. Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Mathematical Control and Related Fields, 2012, 2 (1) : 45-60. doi: 10.3934/mcrf.2012.2.45 |
[6] |
Marco Cappiello, Fabio Nicola. Sharp decay estimates and smoothness for solutions to nonlocal semilinear equations. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1869-1880. doi: 10.3934/dcds.2016.36.1869 |
[7] |
Huijiang Zhao. Large time decay estimates of solutions of nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 69-114. doi: 10.3934/dcds.2002.8.69 |
[8] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[9] |
Guillermo Reyes, Juan-Luis Vázquez. The inhomogeneous PME in several space dimensions. Existence and uniqueness of finite energy solutions. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1275-1294. doi: 10.3934/cpaa.2008.7.1275 |
[10] |
Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086 |
[11] |
Zhigang Wu, Weike Wang. Pointwise estimates of solutions for the Euler-Poisson equations with damping in multi-dimensions. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 1101-1117. doi: 10.3934/dcds.2010.26.1101 |
[12] |
Gabriele Grillo, Matteo Muratori, Maria Michaela Porzio. Porous media equations with two weights: Smoothing and decay properties of energy solutions via Poincaré inequalities. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3599-3640. doi: 10.3934/dcds.2013.33.3599 |
[13] |
Yizhao Qin, Yuxia Guo, Peng-Fei Yao. Energy decay and global smooth solutions for a free boundary fluid-nonlinear elastic structure interface model with boundary dissipation. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1555-1593. doi: 10.3934/dcds.2020086 |
[14] |
Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024 |
[15] |
Abbes Benaissa, Abderrahmane Kasmi. Well-posedeness and energy decay of solutions to a bresse system with a boundary dissipation of fractional derivative type. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4361-4395. doi: 10.3934/dcdsb.2018168 |
[16] |
Vanessa Barros, Carlos Nonato, Carlos Raposo. Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights. Electronic Research Archive, 2020, 28 (1) : 205-220. doi: 10.3934/era.2020014 |
[17] |
Xiaopeng Zhao. Space-time decay estimates of solutions to liquid crystal system in $\mathbb{R}^3$. Communications on Pure and Applied Analysis, 2019, 18 (1) : 1-13. doi: 10.3934/cpaa.2019001 |
[18] |
Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032 |
[19] |
Karen Yagdjian, Anahit Galstian. Fundamental solutions for wave equation in Robertson-Walker model of universe and $L^p-L^q$ -decay estimates. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 483-502. doi: 10.3934/dcdss.2009.2.483 |
[20] |
Linghai Zhang. Decay estimates with sharp rates of global solutions of nonlinear systems of fluid dynamics equations. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2181-2200. doi: 10.3934/dcdss.2016091 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]