• Previous Article
    Resurgence of inner solutions for perturbations of the McMillan map
  • DCDS Home
  • This Issue
  • Next Article
    Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent
March  2011, 31(1): 139-164. doi: 10.3934/dcds.2011.31.139

Existence of multiple spike stationary patterns in a chemotaxis model with weak saturation

1. 

Department of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan

Received  January 2010 Revised  March 2011 Published  June 2011

We are concerned with a multiple boundary spike solution to the steady-state problem of a chemotaxis system: $P_t=\nabla \cdot \big( P\nabla ( \log \frac{P}{\Phi (W)})\big)$, $W_t=ε^2 \Delta W+F(P,W)$, in $\Omega \times (0,\infty)$, under the homogeneous Neumann boundary condition, where $\Omega\subset \mathbb{R}^N$ is a bounded domain with smooth boundary, $P(x,t)$ is a population density, $W(x,t)$ is a density of chemotaxis substance. We assume that $\Phi(W)=W^p$, $p>1$, and we are interested in the cases of $F(P,W)=-W+\frac{PW^q}{\alpha+\gamma W^q}$ and $F(P,W)=-W+\frac{P}{1+ k P}$ with $q>0, \alpha, \gamma, k\ge 0$, which has a saturating growth. Existence of a multiple spike stationary pattern is related to a weak saturation effect of $F(P,W)$ and the shape of the domain $\Omega$. In this paper, we assume that $\Omega$ is symmetric with respect to each hyperplane $\{ x_1=0\},\cdots ,\{ x_{N-1}=0\}$. For two classes of $F(P,W)$ above with saturation effect, we show the existence of multiple boundary spike stationary patterns on $\Omega$ under a weak saturation effect on parameters $\alpha,\gamma$ and $k$. Based on the method developed in [14] and [10], we shall present some technique to construct a multiple boundary spike solution to some reduced nonlocal problem on such domains systematically.
Citation: Kazuhiro Kurata, Kotaro Morimoto. Existence of multiple spike stationary patterns in a chemotaxis model with weak saturation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 139-164. doi: 10.3934/dcds.2011.31.139
References:
[1]

P. Bates, E. N. Dancer and J. Shi, Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability,, Adv. Differential Equations, 4 (1999), 1. Google Scholar

[2]

P. Bates and J. Shi, Existence and instability of spike layer solutions to singular perturbation problems,, J. Funct. Anal., 196 (2002), 211. doi: 10.1016/S0022-1236(02)00013-7. Google Scholar

[3]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations I. Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313. doi: 10.1007/BF00250555. Google Scholar

[4]

H. Berestycki, T. Gallouët and O. Kavian, Nonlinear Euclidean scalar field equations in the plane,, C. R. Acad. Sci. Paris Sér. I Math., 297 (1983), 307. Google Scholar

[5]

M. A. del Pino, Radially symmetric internal layers in a semilinear elliptic system,, Trans. Amer. Math. Soc., 347 (1995), 4807. doi: 10.2307/2155064. Google Scholar

[6]

P. C. Fife, Semilinear elliptic boundary value problems with small parameters,, Arch. Rational Mech. Anal., 52 (1973), 205. doi: 10.1007/BF00247733. Google Scholar

[7]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I,, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103. Google Scholar

[8]

D. Iron, M. Ward and J. Wei, The stability of spike solutions to the one-dimensional Gierer-Meinhardt model,, Phys. D, 150 (2001), 25. doi: 10.1016/S0167-2789(00)00206-2. Google Scholar

[9]

T. Kolokolnikov, W. Sun, M. Ward and J. Wei, The stability of a stripe for the Gierer-Meinhardt model and the effect of saturation,, SIAM J. Appl. Dyn. Syst., 5 (2006), 313. doi: 10.1137/050635080. Google Scholar

[10]

K. Kurata and K. Morimoto, Construction and asymptotic behavior of multi-peak solutions to the Gierer-Meinhardt system with saturation,, Commun. Pure Appl. Anal., 7 (2008), 1443. doi: 10.3934/cpaa.2008.7.1443. Google Scholar

[11]

M. K. Kwong and Y. Li, Uniqueness of radial solutions of semilinear elliptic equations,, Trans. Amer. Math. Soc., 333 (1992), 339. doi: 10.2307/2154113. Google Scholar

[12]

M. K. Kwong and L. Q. Zhang, Uniqueness of the positive solutions of $\Delta u+f(u)=0$ in an annulus,, Differential Integral Equations, 4 (1991), 583. Google Scholar

[13]

H. A. Levine and B. D. Sleeman, A system of reaction diffusion equation arising in the theory of reinforced random walks,, SIAM J. Appl. Math., 57 (1997), 683. doi: 10.1137/S0036139995291106. Google Scholar

[14]

W.-M. Ni and I. Takagi, Point condensation generated by a reaction-diffusion system in axially symmetric domains,, Japan J. Indust. Appl. Math., 12 (1995), 327. doi: 10.1007/BF03167294. Google Scholar

[15]

W.-M. Ni, Qualitative properties of solutions to elliptic problems,, Stationary Partial Differential Equations, I (2004), 157. doi: 10.1016/S1874-5733(04)80005-6. Google Scholar

[16]

H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABCs of taxis in reinforced random walks,, SIAM J. Appl. Math., 57 (1997), 1044. doi: 10.1137/S0036139995288976. Google Scholar

[17]

T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problems. II,, J. Differential Equations, 158 (1999), 94. doi: 10.1016/S0022-0396(99)80020-5. Google Scholar

[18]

X. Ren and J. Wei, Oval shaped droplet solutions in the saturation process of some pattern formation problems,, SIAM J. Appl. Math., 70 (2009), 1120. doi: 10.1137/080742361. Google Scholar

[19]

K. Sakamoto, Internal layers in high-dimensional domains,, Proc. Roy. Soc. Edinburgh Sect. A., 128 (1998), 359. Google Scholar

[20]

T. Senba and T. Suzuki, "Applied Analysis. Mathematical Methods in Natural Science,", Imperial College Press, (2004). Google Scholar

[21]

B. D. Sleeman, M. J. Ward and J. Wei, The existence and stability of spike patterns in a chemotaxis model,, SIAM J. Appl Math., 65 (2005), 790. doi: 10.1137/S0036139902415117. Google Scholar

[22]

T. Suzuki, "Free Energy and Self-Interacting Particles,", Progress in Nonlinear Differential Equations and their Applications, 62 (2005). Google Scholar

[23]

J. Wei, "Existence and Stability of Spikes for the Gierer-Meinhardt System,", Handbook of Differential Equations: Stationary Partial Differential Equations, V (2008), 487. doi: 10.1016/S1874-5733(08)80013-7. Google Scholar

[24]

J. Wei and M. Winter, On the two-dimensional Gierer-Meinhardt system with strong coupling,, SIAM J. Math. Anal., 30 (1999), 1241. doi: 10.1137/S0036141098347237. Google Scholar

[25]

J. Wei and M. Winter, Spikes for the Gierer-Meinhardt system in two dimensions: The strong coupling case,, J. Differential Equations, 178 (2002), 478. doi: 10.1006/jdeq.2001.4019. Google Scholar

[26]

J. Wei and M. Winter, On the Gierer-Meinhardt system with saturation,, Commun. Contemp. Math., 6 (2004), 259. doi: 10.1142/S021919970400132X. Google Scholar

[27]

J. Wei and M. Winter, Existence, classification and stability analysis of multiple-peaked solutions for the Gierer-Meinhardt system in $R^1$,, Methods Appl. Anal., 14 (2007), 119. Google Scholar

[28]

J. Wei and M. Winter, Stationary multiple spots for reaction-diffusion systems,, J. Math. Biol., 57 (2008), 53. doi: 10.1007/s00285-007-0146-y. Google Scholar

[29]

E. Zeidler, "Nonlinear Functional Analysis and its Applications. I,, Fixed-Point Theorems, (1986). Google Scholar

show all references

References:
[1]

P. Bates, E. N. Dancer and J. Shi, Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability,, Adv. Differential Equations, 4 (1999), 1. Google Scholar

[2]

P. Bates and J. Shi, Existence and instability of spike layer solutions to singular perturbation problems,, J. Funct. Anal., 196 (2002), 211. doi: 10.1016/S0022-1236(02)00013-7. Google Scholar

[3]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations I. Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313. doi: 10.1007/BF00250555. Google Scholar

[4]

H. Berestycki, T. Gallouët and O. Kavian, Nonlinear Euclidean scalar field equations in the plane,, C. R. Acad. Sci. Paris Sér. I Math., 297 (1983), 307. Google Scholar

[5]

M. A. del Pino, Radially symmetric internal layers in a semilinear elliptic system,, Trans. Amer. Math. Soc., 347 (1995), 4807. doi: 10.2307/2155064. Google Scholar

[6]

P. C. Fife, Semilinear elliptic boundary value problems with small parameters,, Arch. Rational Mech. Anal., 52 (1973), 205. doi: 10.1007/BF00247733. Google Scholar

[7]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I,, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103. Google Scholar

[8]

D. Iron, M. Ward and J. Wei, The stability of spike solutions to the one-dimensional Gierer-Meinhardt model,, Phys. D, 150 (2001), 25. doi: 10.1016/S0167-2789(00)00206-2. Google Scholar

[9]

T. Kolokolnikov, W. Sun, M. Ward and J. Wei, The stability of a stripe for the Gierer-Meinhardt model and the effect of saturation,, SIAM J. Appl. Dyn. Syst., 5 (2006), 313. doi: 10.1137/050635080. Google Scholar

[10]

K. Kurata and K. Morimoto, Construction and asymptotic behavior of multi-peak solutions to the Gierer-Meinhardt system with saturation,, Commun. Pure Appl. Anal., 7 (2008), 1443. doi: 10.3934/cpaa.2008.7.1443. Google Scholar

[11]

M. K. Kwong and Y. Li, Uniqueness of radial solutions of semilinear elliptic equations,, Trans. Amer. Math. Soc., 333 (1992), 339. doi: 10.2307/2154113. Google Scholar

[12]

M. K. Kwong and L. Q. Zhang, Uniqueness of the positive solutions of $\Delta u+f(u)=0$ in an annulus,, Differential Integral Equations, 4 (1991), 583. Google Scholar

[13]

H. A. Levine and B. D. Sleeman, A system of reaction diffusion equation arising in the theory of reinforced random walks,, SIAM J. Appl. Math., 57 (1997), 683. doi: 10.1137/S0036139995291106. Google Scholar

[14]

W.-M. Ni and I. Takagi, Point condensation generated by a reaction-diffusion system in axially symmetric domains,, Japan J. Indust. Appl. Math., 12 (1995), 327. doi: 10.1007/BF03167294. Google Scholar

[15]

W.-M. Ni, Qualitative properties of solutions to elliptic problems,, Stationary Partial Differential Equations, I (2004), 157. doi: 10.1016/S1874-5733(04)80005-6. Google Scholar

[16]

H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABCs of taxis in reinforced random walks,, SIAM J. Appl. Math., 57 (1997), 1044. doi: 10.1137/S0036139995288976. Google Scholar

[17]

T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problems. II,, J. Differential Equations, 158 (1999), 94. doi: 10.1016/S0022-0396(99)80020-5. Google Scholar

[18]

X. Ren and J. Wei, Oval shaped droplet solutions in the saturation process of some pattern formation problems,, SIAM J. Appl. Math., 70 (2009), 1120. doi: 10.1137/080742361. Google Scholar

[19]

K. Sakamoto, Internal layers in high-dimensional domains,, Proc. Roy. Soc. Edinburgh Sect. A., 128 (1998), 359. Google Scholar

[20]

T. Senba and T. Suzuki, "Applied Analysis. Mathematical Methods in Natural Science,", Imperial College Press, (2004). Google Scholar

[21]

B. D. Sleeman, M. J. Ward and J. Wei, The existence and stability of spike patterns in a chemotaxis model,, SIAM J. Appl Math., 65 (2005), 790. doi: 10.1137/S0036139902415117. Google Scholar

[22]

T. Suzuki, "Free Energy and Self-Interacting Particles,", Progress in Nonlinear Differential Equations and their Applications, 62 (2005). Google Scholar

[23]

J. Wei, "Existence and Stability of Spikes for the Gierer-Meinhardt System,", Handbook of Differential Equations: Stationary Partial Differential Equations, V (2008), 487. doi: 10.1016/S1874-5733(08)80013-7. Google Scholar

[24]

J. Wei and M. Winter, On the two-dimensional Gierer-Meinhardt system with strong coupling,, SIAM J. Math. Anal., 30 (1999), 1241. doi: 10.1137/S0036141098347237. Google Scholar

[25]

J. Wei and M. Winter, Spikes for the Gierer-Meinhardt system in two dimensions: The strong coupling case,, J. Differential Equations, 178 (2002), 478. doi: 10.1006/jdeq.2001.4019. Google Scholar

[26]

J. Wei and M. Winter, On the Gierer-Meinhardt system with saturation,, Commun. Contemp. Math., 6 (2004), 259. doi: 10.1142/S021919970400132X. Google Scholar

[27]

J. Wei and M. Winter, Existence, classification and stability analysis of multiple-peaked solutions for the Gierer-Meinhardt system in $R^1$,, Methods Appl. Anal., 14 (2007), 119. Google Scholar

[28]

J. Wei and M. Winter, Stationary multiple spots for reaction-diffusion systems,, J. Math. Biol., 57 (2008), 53. doi: 10.1007/s00285-007-0146-y. Google Scholar

[29]

E. Zeidler, "Nonlinear Functional Analysis and its Applications. I,, Fixed-Point Theorems, (1986). Google Scholar

[1]

Tian Xiang. Dynamics in a parabolic-elliptic chemotaxis system with growth source and nonlinear secretion. Communications on Pure & Applied Analysis, 2019, 18 (1) : 255-284. doi: 10.3934/cpaa.2019014

[2]

Yilong Wang, Xuande Zhang. On a parabolic-elliptic chemotaxis-growth system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 321-328. doi: 10.3934/dcdss.2020018

[3]

Youshan Tao, Michael Winkler. A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2047-2067. doi: 10.3934/cpaa.2019092

[4]

Qi Wang, Jingyue Yang, Lu Zhang. Time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: Effect of cellular growth. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3547-3574. doi: 10.3934/dcdsb.2017179

[5]

Luis F. Gordillo, Stephen A. Marion, Priscilla E. Greenwood. The effect of patterns of infectiousness on epidemic size. Mathematical Biosciences & Engineering, 2008, 5 (3) : 429-435. doi: 10.3934/mbe.2008.5.429

[6]

M. Guedda, R. Kersner, M. Klincsik, E. Logak. Exact wavefronts and periodic patterns in a competition system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1589-1600. doi: 10.3934/dcdsb.2014.19.1589

[7]

Muhammad Altaf Khan, Muhammad Farhan, Saeed Islam, Ebenezer Bonyah. Modeling the transmission dynamics of avian influenza with saturation and psychological effect. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 455-474. doi: 10.3934/dcdss.2019030

[8]

Yūki Naito, Takasi Senba. Oscillating solutions to a parabolic-elliptic system related to a chemotaxis model. Conference Publications, 2011, 2011 (Special) : 1111-1118. doi: 10.3934/proc.2011.2011.1111

[9]

Pan Zheng, Chunlai Mu, Xuegang Hu. Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2299-2323. doi: 10.3934/dcds.2015.35.2299

[10]

Yuanyuan Liu, Youshan Tao. Asymptotic behavior in a chemotaxis-growth system with nonlinear production of signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 465-475. doi: 10.3934/dcdsb.2017021

[11]

Pan Zheng, Chunlai Mu, Xiaojun Song. On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1737-1757. doi: 10.3934/dcds.2016.36.1737

[12]

Weichung Wang, Tsung-Fang Wu, Chien-Hsiang Liu. On the multiple spike solutions for singularly perturbed elliptic systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 237-258. doi: 10.3934/dcdsb.2013.18.237

[13]

Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046

[14]

Uchida Hidetake. Analytic smoothing effect and global existence of small solutions for the elliptic-hyperbolic Davey-Stewartson system. Conference Publications, 2001, 2001 (Special) : 182-190. doi: 10.3934/proc.2001.2001.182

[15]

Rachidi B. Salako, Wenxian Shen. Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6189-6225. doi: 10.3934/dcds.2017268

[16]

Tomasz Cieślak, Kentarou Fujie. Global existence in the 1D quasilinear parabolic-elliptic chemotaxis system with critical nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 165-176. doi: 10.3934/dcdss.2020009

[17]

Pan Zheng. Global boundedness and decay for a multi-dimensional chemotaxis-haptotaxis system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2039-2056. doi: 10.3934/dcdsb.2016035

[18]

Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064

[19]

Jau-Chuan Ke, Hsin-I Huang, Chuen-Horng Lin. Analysis on a queue system with heterogeneous servers and uncertain patterns. Journal of Industrial & Management Optimization, 2010, 6 (1) : 57-71. doi: 10.3934/jimo.2010.6.57

[20]

Shiren Zhu, Xiaoli Chen, Jianfu Yang. Regularity, symmetry and uniqueness of positive solutions to a nonlinear elliptic system. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2685-2696. doi: 10.3934/cpaa.2013.12.2685

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]